首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
C Kunsch  H T Hartle    B Wigdahl 《Journal of virology》1989,63(12):5054-5061
Human immunodeficiency virus type 1 (HIV-1) has been implicated in the generation of acquired immunodeficiency syndrome-associated neurological dysfunction, and it is believed that the presence of CD4 in the nervous system may be involved in the susceptibility of selected neural cell populations to HIV-1 infection. We previously demonstrated (B. Wigdahl, R. A. Guyton, and P. S. Sarin, Virology 159:440-445, 1987) that glial cells derived from human fetal dorsal root ganglion (DRG) are susceptible to HIV-1 infection and subsequently express at least a fraction of the virus genome. In contrast to HIV-1 infection of CD4+ lymphocytes, which can be blocked by treatment with monoclonal antibodies directed against the HIV-1-binding region of CD4 (T4A epitope), treatment of human fetal DRG glial cells with similar antibodies resulted in only a slight reduction in HIV-1-specific gag antigen expression. In addition, preincubation of the HIV-1 inoculum prior to infection with HIV-1-neutralizing antiserum did not reduce HIV-1 gag antigen expression in these cells. Furthermore, we were unable to detect the synthesis or accumulation of the CD4 molecule in neural cell populations derived from DRG. However, a protected CD4-specific RNA fragment was detected in RNA isolated from human fetal DRG and spinal cord tissue by an RNase protection assay with a CD4-specific antisense RNA probe. RNA blot hybridization analysis of total cellular RNA isolated from human fetal DRG and spinal cord demonstrated specific hybridization to an RNA species that comigrated with the mature 3.0-kilobase CD4 mRNA as well as two unique CD4 RNA species with relative molecular sizes of approximately 5.3 and 6.7 kilobases. Furthermore, all three CD4-related RNA species were polyadenylated when isolated from human fetal spinal cord tissue. These data suggest that HIV-1 infection of human fetal DRG glial cells may proceed via a mechanism of viral entry independent of the T4A epitope of CD4.  相似文献   

5.
Preferential apoptosis of HIV-1-specific CD4+ T cells   总被引:4,自引:0,他引:4  
In contrast to other viral infections such as CMV, circulating frequencies of HIV-1-specific CD4+ T cells in peripheral blood are quantitatively diminished in the majority of HIV-1-infected individuals. One mechanism for this quantitative defect is preferential infection of HIV-1-specific CD4+ T cells, although <10% of HIV-1-specific CD4+ T cells are infected. Apoptosis has been proposed as an important contributor to the pathogenesis of CD4+ T cell depletion in HIV/AIDS. We show here that, within HIV-1-infected individuals, a greater proportion of ex vivo HIV-1-specific CD4+ T cells undergo apoptosis compared with CMV-specific CD4+ T cells (45 vs 7.4%, respectively, p < 0.05, in chronic progressors). The degree of apoptosis within HIV-1-specific CD4+ T cells correlates with viral load and disease progression, and highly active antiretroviral therapy abrogates these differences. The data support a mechanism for apoptosis in these cells similar to that found in activation-induced apoptosis through the TCR, resulting in oxygen-free radical production, mitochondrial damage, and caspase-9 activation. That HIV-1 proteins can also directly enhance activation-induced apoptosis supports a mechanism for a preferential induction of apoptosis of HIV-1-specific CD4+ T cells, which contributes to a loss of immunological control of HIV-1 replication.  相似文献   

6.
7.
Cell-mediated immunity (CMI) is key to defense against intracellular pathogens such as Chlamydia trachomatis and viruses that infect the lower female genital tract, but little is known about CMI at this site. Recent studies indicate that there are immunological microenvironments within the female genital tract, and that immune functions are affected by hormones as well as infections and inflammatory processes. To determine the distribution of mediators of CMI within the lower female genital tract, we have enumerated and characterized T-lymphocyte subsets and natural killer and antigen presenting cells (APCs; macrophages and dendritic cells) in the introitus, vagina, ectocervix, endocervix and cervical transformation zone (TZ) from healthy women, and have examined the effects of the menstrual cycle, menopause and inflammation on these parameters. In women without inflammation, T cells and APCs were most prevalent in the cervical TZ and surrounding tissue. Intraepithelial lymphocytes were predominantly CD8+ T cell+; most CD8+ cells in the TZ and endocervix, and a proportion of cells in the ectocervix, expressed T-cell internal antigen-1, a marker of cytotoxic potential. In contrast, the normal vaginal mucosa contained few T cells and APCs. Cervicitis and vaginitis cases had increased numbers of intraepithelial CD8+ and CD4+ lymphocytes and APCs. The menstrual cycle and menopause had no apparent effect on cellular localization or abundance in any of the lower genital tract tissues. These data indicate that the cervix, especially the TZ, is the major inductive and effector site for CMI in the lower female genital tract. Because CD4+ T cells and APCs are primary host cells for human immunodeficiency virus type 1 (HIV-1), these data also provide further evidence that the cervix is a primary infection site of HIV-1, and that inflammation increases the risk of HIV transmission.  相似文献   

8.
Mucosal mononuclear (MMC) CCR5+CD4+ T cells of the gastrointestinal (GI) tract are selectively infected and depleted during acute HIV-1 infection. Despite early initiation of combination antiretroviral therapy (cART), gut-associated lymphoid tissue (GALT) CD4+ T cell depletion and activation persist in the majority of HIV-1 positive individuals studied. This may result from ongoing HIV-1 replication and T-cell activation despite effective cART. We hypothesized that ongoing viral replication in the GI tract during cART would result in measurable viral evolution, with divergent populations emerging over time. Subjects treated during early HIV-1 infection underwent phlebotomy and flexible sigmoidoscopy with biopsies prior to and 15–24 months post initiation of cART. At the 2nd biopsy, three GALT phenotypes were noted, characterized by high, intermediate and low levels of immune activation. A representative case from each phenotype was analyzed. Each subject had plasma HIV-1 RNA levels <50 copies/ml at 2nd GI biopsy and CD4+ T cell reconstitution in the peripheral blood. Single genome amplification of full-length HIV-1 envelope was performed for each subject pre- and post-initiation of cART in GALT and PBMC. A total of 280 confirmed single genome sequences (SGS) were analyzed for experimental cases. For each subject, maximum likelihood phylogenetic trees derived from molecular sequence data showed no evidence of evolved forms in the GALT over the study period. During treatment, HIV-1 envelope diversity in GALT-derived SGS did not increase and post-treatment GALT-derived SGS showed no substantial genetic divergence from pre-treatment sequences within transmitted groups. Similar results were obtained from PBMC-derived SGS. Our results reveal that initiation of cART during acute/early HIV-1 infection can result in the interruption of measurable viral evolution in the GALT, suggesting the absence of de-novo rounds of HIV-1 replication in this compartment during suppressive cART.  相似文献   

9.
Unlike HIV-1-infected people, most HIV-2-infected subjects maintain a healthy CD4+ T cell count and a strong HIV-specific CD4+ T cell response. To define the cellular immunological correlates of good prognosis in HIV-2 infection, we conducted a cross-sectional study of HIV Gag-specific T cell function in HIV-1- and HIV-2-infected Gambians. Using cytokine flow cytometry and lymphoproliferation assays, we show that HIV-specific CD4+ T cells from HIV-2-infected individuals maintained proliferative capacity, were not terminally differentiated (CD57-), and more frequently produced IFN-gamma or IL-2 than CD4+ T cells from HIV-1-infected donors. Polyfunctional (IFN-gamma+/IL-2+) HIV-specific CD4+ T cells were found exclusively in HIV-2+ donors. The disparity in CD4+ T cell responses between asymptomatic HIV-1- and HIV-2-infected subjects was not associated with differences in the proliferative capacity of HIV-specific CD8+ T cells. This study demonstrates that HIV-2-infected donors have a well-preserved and functionally heterogeneous HIV-specific memory CD4+ T cell response that is associated with delayed disease progression in the majority of infected people.  相似文献   

10.
A growing body of evidence indicates that proviral DNA load quantitation is an important parameter in establishing the dynamics of HIV infection. Proviral DNA load can be determined during the follow-up of infected individuals to evaluate reservoir status in addition to viral replication. Hence, the study of viral reservoirs, represented by HIV-1 latently infected cells, including resting memory CD4+ T cells, monocytes and macrophages, by which HIV-1 can be reactivated, opens new perspectives in the assessment and the comprehension of HIV-1 infection. However, the identification of viral reservoirs, that can store both wild and drug resistance viruses, is one of the most important steps in developing treatment strategies because it is now clear that viral reservoirs not only prevent sterilizing immunity but also represent a major obstacle to curing the infection with the potent antiretroviral drugs currently in use. Even if only careful evaluation of virological and immunological markers is necessary to fully characterize the course of HIV-1 infection and to provide a more complete laboratory-based assessment of disease progression, the availability of a new standardized assay such as DNA proviral load will be important to assess the true extent of virological suppression in treated patients and to verify the efficacy of new immune-based therapies aimed at purging HIV-1 DNA reservoirs. Several studies demonstrate, in fact, that HIV-1 cellular DNA load may be an indicator of spread of infection whereas the plasma RNA load is indicates active infection. This article will review the importance of monitoring HIV-1 proviral load DNA during the follow-up of HIV-1 infected subjects, suggesting that additional information complementing HIV RNA load could provide crucial information to monitor viral replication and the effectiveness of HAART therapy.  相似文献   

11.
The role of Type I interferon (IFN) during pathogenic HIV and SIV infections remains unclear, with conflicting observations suggesting protective versus immunopathological effects. We therefore examined the effect of IFNα/β on T cell death and viremia in HIV infection. Ex vivo analysis of eight pro- and anti-apoptotic molecules in chronic HIV-1 infection revealed that pro-apoptotic Bak was increased in CD4+ T cells and correlated directly with sensitivity to CD95/Fas-mediated apoptosis and inversely with CD4+ T cell counts. Apoptosis sensitivity and Bak expression were primarily increased in effector memory T cells. Knockdown of Bak by RNA interference inhibited CD95/Fas-induced death of T cells from HIV-1-infected individuals. In HIV-1-infected patients, IFNα-stimulated gene expression correlated positively with ex vivo T cell Bak levels, CD95/Fas-mediated apoptosis and viremia and negatively with CD4+ T cell counts. In vitro IFNα/β stimulation enhanced Bak expression, CD95/Fas expression and CD95/Fas-mediated apoptosis in healthy donor T cells and induced death of HIV-specific CD8+ T cells from HIV-1-infected patients. HIV-1 in vitro sensitized T cells to CD95/Fas-induced apoptosis and this was Toll-like receptor (TLR)7/9- and Type I IFN-dependent. This sensitization by HIV-1 was due to an indirect effect on T cells, as it occurred in peripheral blood mononuclear cell cultures but not purified CD4+ T cells. Finally, peak IFNα levels and viral loads correlated negatively during acute SIV infection suggesting a potential antiviral effect, but positively during chronic SIV infection indicating that either the virus drives IFNα production or IFNα may facilitate loss of viral control. The above findings indicate stage-specific opposing effects of Type I IFNs during HIV-1 infection and suggest a novel mechanism by which these cytokines contribute to T cell depletion, dysregulation of cellular immunity and disease progression.  相似文献   

12.
The latency of human immunodeficiency virus type 1 (HIV-1) in resting primary CD4+ T cells is the major barrier for the eradication of the virus in patients on suppressive highly active antiretroviral therapy (HAART). Even with optimal HAART treatment, replication-competent HIV-1 still exists in resting primary CD4+ T cells. Multiple restriction factors that act upon various steps of the viral life cycle could contribute to viral latency. Here we show that cellular microRNAs (miRNAs) potently inhibit HIV-1 production in resting primary CD4+ T cells. We have found that the 3' ends of HIV-1 messenger RNAs are targeted by a cluster of cellular miRNAs including miR-28, miR-125b, miR-150, miR-223 and miR-382, which are enriched in resting CD4+ T cells as compared to activated CD4+ T cells. Specific inhibitors of these miRNAs substantially counteracted their effects on the target mRNAs, measured either as HIV-1 protein translation in resting CD4+ T cells transfected with HIV-1 infectious clones, or as HIV-1 virus production from resting CD4+ T cells isolated from HIV-1-infected individuals on suppressive HAART. Our data indicate that cellular miRNAs are pivotal in HIV-1 latency and suggest that manipulation of cellular miRNAs could be a novel approach for purging the HIV-1 reservoir.  相似文献   

13.
14.
HIV-1 Nef protein is an approximately 27-kDa myristoylated protein that is a virulence factor essential for efficient viral replication and infection in CD4(+) T cells. The functions of CD4(+) T cells are directly impeded after HIV infection. HIV-1 Nef plays a crucial role in manipulating host cellular machinery and in HIV pathogenesis by reducing the ability of infected lymphocytes to form immunological synapses by promoting virological synapses with APCs, and by affecting T-cell stimulation. This article reviews the current status of the efficient Nef-mediated spread of virus in the unreceptive environment of the immune system by altering CD4(+) T-lymphocyte signaling, intracellular trafficking, cell migration and apoptotic pathways.  相似文献   

15.
16.
Virologic and immunologic studies were performed on five patients presenting with primary human immunodeficiency virus type 1 (HIV-1) infection. CD8+ cytotoxic T lymphocyte (CTL) precursors specific for cells expressing antigens of HIV-1 Gag, Pol, and Env were detected at or within 3 weeks of presentation in four of the five patients and were detected in all five patients by 3 to 6 months after presentation. The one patient with an absent initial CTL response had prolonged symptoms, persistent viremia, and low CD4+ T-cell count. Neutralizing antibody activity was absent at the time of presentation in all five patients. These findings suggest that cellular immunity is involved in the initial control of virus replication in primary HIV-1 infection and indicate a role for CTL in protective immunity to HIV-1 in vivo.  相似文献   

17.
CCR5 cell-surface expression was studied in relation to CCR5 genotype and clinical course of HIV-1 infection. HIV-1 infected CCR5+/+ individuals had higher percentages of CCR5-expressing CD4+ T cells as compared with HIV-1-infected CCR532/+ individuals. For both genotypic groups, the percentages of CCR5-expressing cells were higher than for the uninfected counterparts (CCR5+/+, HIV+ 28% and HIV- 15% (p < 0.0001); CCR532/+, HIV+ 21% and HIV- 10% (p = 0.001), respectively). In HIV-1-infected individuals, high percentages of CCR5-expressing cells were associated with low CD4+ T cell numbers (p = 0.001), high viral RNA load in serum (p = 0.046), and low T cell function (p = 0.054). As compared with nonprogressors with similar CD4+ T cell numbers, individuals who did progress to AIDS had a higher percentage of CCR5-expressing CD4+ T cells (32% vs 21% (p = 0.002). Longitudinal analysis of CCR5+/+ individuals revealed slight, although not statistically significant, increases in CCR5-expressing CD4+ T cells and CD4+ T cell subsets characterized by the expression of CD45 isoforms, during the course of HIV-1 infection. Preseroconversion, the percentage of CCR5-expressing CD4+ T cells was higher in individuals who subsequently developed AIDS (28%) than in those who did not show disease progression within a similar time frame (20%; p = 0.059). Our data indicate that CCR5 expression increases with progression of disease, possibly as a consequence of continuous immune activation associated with HIV-1 infection. In turn, CCR5 expression may influence the clinical course of infection.  相似文献   

18.
In order to identify organ and cellular targets of persistent enterovirus infection in vivo, immunocompetent mice (SWR/J, H-2q) were inoculated intraperitoneally with coxsackievirus B3 (CVB3). By use of in situ hybridization for the detection of enteroviral RNA, we show that CVB3 is capable of inducing a multiorgan disease. During acute infection, viral RNA was visualized at high levels in the heart muscle, pancreas, spleen, and lymph nodes and at comparably low levels in the central nervous system, thymus, lung, and liver. At later stages of the disease, the presence of enteroviral RNA was found to be restricted to the myocardium, spleen, and lymph nodes. To characterize infected lymphoid cells during the course of the disease, enteroviral RNA and cell-specific surface antigens were visualized simultaneously in situ in spleen tissue sections. In acute infection, the majority of infected spleen cells, which are located primarily at the periphery of lymph follicles, were found to express the CD45R/B220+ phenotype of pre-B and B cells. Whereas viral RNA was also detected in certain CD4+ helper T cells and Mac-1+ macrophages, no enteroviral genomes were identified in CD8+ cytotoxic/suppressor T cells. Later in disease, the localization of enteroviral RNA revealed a persistent type of infection of B cells within the germinal centers of secondary follicles. In addition, detection of the replicative viral minus-strand RNA intermediate provided evidence for virus replication in lymphoid cells of the spleen during the course of the disease. These data indicate that immune cells are important targets of CVB3 infection, providing a noncardiac reservoir for viral RNA during acute and persistent myocardial enterovirus infection.  相似文献   

19.
Studies of cultivatable human immunodeficiency virus type 1 (HIV-1) from plasma samples from infected patients have shown a correspondence between increasing viral burden and disease progression, but these measurements are selective and thus nonrepresentative of the in vivo viral load. Quantitation of proviral DNA sequences by the polymerase chain reaction in purified CD4+ T cells has shown a similar relationship but does not provide a measure of viral gene expression. We have studied viral DNA, genomic RNA, and spliced mRNA expression of HIV-1 in infected patients with a quantitative polymerase chain reaction assay. Viral RNA expression is detected in all stages of infection. These data show that the natural history of HIV infection is associated with a shift in the balance of viral expression favoring the production of genomic RNA without a preceding period of true viral latency.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) infects and destroys cells of the immune system leading to an overt immune deficiency known as HIV acquired immunodeficiency syndrome (HIV/AIDS). The gut associated lymphoid tissue is one of the major lymphoid tissues targeted by HIV-1, and is considered a reservoir for HIV-1 replication and of major importance in CD4+ T-cell depletion. In addition to immunodeficiency, HIV-1 infection also directly causes gastrointestinal (GI) dysfunction, also known as HIV enteropathy. This enteropathy can manifest itself as many pathological changes in the GI tract. The objective of this study was to determine the association of gut HIV-1 infection markers with long-term survival in a cohort of men who have sex with men (MSM) enrolled pre-HAART (Highly Active Antiretroviral Therapy). We examined survival over 15-years in a cohort of 42 HIV-infected cases: In addition to CD4+ T cell counts and HIV-1 plasma viral load, multiple gut compartment (duodenum and colon) biopsies were taken by endoscopy every 6 months during the initial 3-year period. HIV-1 was cultured from tissues and phenotyped and viral loads in the gut tissues were determined. Moreover, the tissues were subjected to an extensive assessment of enteroendocrine cell distribution and pathology. The collected data was used for survival analyses, which showed that patients with higher gut tissue viral load levels had a significantly worse survival prognosis. Moreover, lower numbers of serotonin (duodenum) and somatostatin (duodenum and colon) immunoreactive cell counts in the gut tissues of patients was associated with significant lower survival prognosis. Our study, suggested that HIV-1 pathogenesis and survival prognosis is associated with altered enteroendocrine cell numbers, which could point to a potential role for enteroendocrine function in HIV infection and pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号