首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of left and right unilateral cervical vagotomy on the content of several neuroendocrine peptides were studied in different parts of the murine gastrointestinal tract, known to receive vagal innervation. The neuroendocrine peptides investigated were secretin, gastric inhibitory peptide (GIP), gastrin, motilin, peptide YY (PYY), somatostatin, substance P, VIP, neurotensin, neuropeptide Y (NPY), and galanin. The neuroendocrine peptide concentration was affected after both left and right vagotomy, and that the changes in the concentrations of the neuroendocrine peptide levels occurred in all the gastrointestinal segments investigated, namely antrum, small and large intestine. However, these changes varied, depending on which side was vagotomized and the interval after vagotomy. It is concluded that the vagus nerve had an important impact on the neuroendocrine system in the murine gut. It is suggested, furthermore that the contradictory results obtained earlier on the effect of vagotomy on the gastrointestinal peptides may depend on differences in the vagotomy methods used and on differences in observation time after vagotomy.  相似文献   

2.
Summary The presence and distribution of regulatory peptides in nerves and endocrine cells of the stomach, intestine and rectum of a urodele amphibian, the mudpuppy, Necturus maculosus, was studied immunohistochemically in sections or whole-mount preparations of the gut wall. The effect of the occurring peptides on gut motility was studied in isolated strip preparations of circular and longitudinal smooth muscle from different parts of the gut.Bombesin-, neurotensin-, substance P- and VIP-like immunoreactivity was present in abundant nerve fibres in the myenteric plexus of both stomach, intestine and rectum. Single fibres or bundles were present in the circular muscle layer and in a well-developed deep muscular plexus in the intestine and rectum. Immunoreactive nerve cells were found in the myenteric plexus of the stomach, intestine (neurotensin only) and rectum. Gastrin/CCK-like immunoreactivity was observed only in a few fibres in stomach and rectum.Endocrine cells containing bombesin-, met-enkephalin-, gastrin/CCK-, neurotensin-, somatostatin- or substance P- like immunoreactivity were present in the mucosa.The effect of bombesin was an inhibition of the rhythmic activity in circular muscle preparations and in longitudinal muscle from the rectum, while longitudinal muscle from the stomach usually responded with a weak increase in tonus. Neurotensin, like bombesin, was inhibitory on the spontaneous rhythmic activity of circular muscle throughout the gut, while the effect on longitudinal muscle was an increase in tonus. Met-enkephalin and substance P increased the tonus of all types of preparations, and often, in addition, initiated a rhythmic activity superimposed on this maintained tonus. VIP had a general inhibitory effect on the preparations, decreasing tonus and/or abolishing rhythmic activity.It is concluded that bombesin-, neurotensin-, substance P- and VIP-like peptides are present in nerves throughout the urodele gut and may have physiological functions in regulating the motility of the gut. The gastrin/CCK-like peptide present in nerves of the stomach and rectum may affect the function of these parts of the gut. The regulatory peptides present in endocrine cells may, perhaps with the exception of the somatostatin-like peptide, affect the motility humorally.  相似文献   

3.
During metamorphosis, the frog intestine goes through a dramatic shortening with extensive apoptosis and regeneration in the epithelial layer and connective tissue. Our aim was to study changes in the enteric nervous system represented by one inhibitory (vasoactive intestinal polypeptide; VIP) and one excitatory (substance P, neurokinin A; SP/NKA) nerve population and concomitant changes in neurotrophin receptor occurrence during this development in the gut of Xenopus laevis adults and tadpoles at different stages of metamorphosis (NF stages 57–66). Sections were incubated with antibodies against the neurotrophin Trk receptors and p75NTR, and the neurotransmitters VIP and SP/NKA. Trk-immunoreactive nerves increased dramatically but transiently in number during early metamorphic climax. Nerves immunoreactive for p75NTR were present throughout the gut, decreased in number in the middle intestine during climax, and increased in the large intestine during late metamorphosis. The percentage of VIP-immunoreactive nerves did not change during metamorphosis. SP/NKA-immunoreactive nerves were first apparent at NF stages 61–62 in the middle intestine and increased in the stomach and large intestine during metamorphosis. Endocrine cells expressing SP/NKA increased in number in stomach, proximal, and middle intestine during metamorphic climax. Thus, neurotrophin receptors are expressed transiently in neurons of the enteric nervous system during metamorphosis in Xenopus laevis and SP/NKA innervation is more abundant in the intestine of the postmetamorphic frog than in the tadpole.This study was supported by grants from the Swedish Research Council to S. Holmgren  相似文献   

4.
1. Pentagastrin (10(-8)-2 X 10(-6) M) was found to increase motor activity in the cardiac stomach and spiral intestine but only occasionally in the pyloric stomach and not at all in the rectum. 2. Substance P increased motor activity in both parts of the stomach and the rectum (10(-8)-5 X 10(-7) M) but had only a slight effect on the spiral intestine. 3. No effect on the activity of any part of the gut was seen with VIP (10(-7) M), neurotensin (2 X 10(-6) M) or bradykinin (2 X 10(-5) M). 4. The responses to pentagastrin or substance P were not abolished by TTX (10(-6) M). 5. The implications of these results for the understanding of the control of gut motility in elasmobranchs is discussed.  相似文献   

5.
Summary The general morphology of the intramural innervation of the myenteric plexus of the axolotl stomach has been investigated using antisera raised against neuron-specific enolase and a microtubule-associated protein. Additionally, the occurrence of serotonin and several peptidergic neurotransmitter/neuromodulator substances was studied.Immunoreactivity for galanin, vasoactive intestinal polypeptide, substance P and neuromedin U was found in both fibres and intrinsic perikarya, whereas the serotonin and calcitonin gene-related peptide-like-substance-containing nerve fibres seemed to be of extrinsic origin. The axolotl stomach myenteric plexus appeared to be devoid of enkephalin-, neuropeptide Y-, somatostatin-and bombesin-like immunoreactive nerve fibres and nerve cell bodies.Double labelling experiments revealed the presence of a subpopulation of substance P/calcitonin gene-related peptide-like immunoreactive nerve fibres. Contrary to mammals, no coexistence of neuromedin U and substance P was found. Our findings illustrate that besides a number of similarities, considerable species differences exist between urodeles and anurans with regard to the organization of the enteric nervous system.  相似文献   

6.
Summary Immunoreactivity of substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, neuropeptide Y, and galanin is localized in nerve fibres distributed in the fungiform and filiform papillae of the tongue of the bullfrog,Rana catesbeiana. A combination of indirect double immunofluorescence labelling and a multiple dye filter system clearly demonstrated that all substance P fibres in the connective tissue core of the fungiform and filiform papillae, and within the rim of ciliated cells located on the top of the fungiform papillae showed coexistence with calcitonin gene-related peptide. A few fibres in the epithelial discs, which are located in the centre of the top of the fungiform papillae, showed the immunoreactivity of calcitonin gene-related peptide alone. There were no substance P fibres which showed coexistence with vasoactive intestinal polypeptide, galanin, and neuropeptide Y. In high magnification images, substance P and vasoactive intestinal polypeptide, and substance P and galanin fibres were recognized as two interwined fibres within the same thin nerve bundle. No immunoreactivity of leucine- and methionine-enkephalins can be detected. These findings suggest that the chemoreceptor function of the bullfrog gustatory organ may be under the control of complicated peptidergic innervation.  相似文献   

7.
The pattern of the digestive vasoactive intestinal polypeptide (VIP)-ergic innervation is described immunohistochemically in the hedgehog Erinaceus europaeus. This animal is a small-sized, wild, nocturnal, lower eutherian mammal whose gastrointestinal tract shows some similarities with the avian gut. The myenteric plexus of the stomach, the mucosa of the small intestine and the circular muscle layer of the large intestine are the best VIP-innervated structures. The pattern of the positive innervation is similar to that described in other mammals and in some bird species. The widespread diffusion of the neuropeptide in the gut is probably due to the importance of its functions in the digestive physiology.  相似文献   

8.
Summary A novel neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), exhibits sequence homology with vasoactive intestinal polypeptide (VIP) and occurs in the mammalian brain, lung and gut. The distribution of PACAP in ganglionic and aganglionic portions of the large intestine of patients with Hirschsprung's disease was examined by immunohistochemistry and radioimmunoassay. PACAP-immunoreactive nerve fibers were distributed in all layers of the ganglionic and aganglionic segments of the intestine, although they were less numerous in the latter, and PACAP-immunoreactive nerve cell bodies were seen in the ganglionic portion of the intestine. The concentration of immunoreactive PACAP was lower in the aganglionic than in the ganglionic segment of the intestinal wall. PACAP and VIP were found to coexist in both ganglionic and aganglionic segments of the intestine. Apparently, PACAP participates in the regulation of gut motility. The scarcer PACAP innervation of the aganglionic segment may contribute to the defect in intestinal relaxation seen in patients with Hirschsprung's disease.  相似文献   

9.
Galanin effects are mediated by three G-protein-coupled receptors: galanin receptor 1 (GalR1), GalR2 and GalR3. We quantified mRNA levels of GalR1, GalR2 and GalR3 in the rat stomach, small and large intestine using real-time RT-PCR. All three GalR mRNAs were detected throughout the gut at different levels. GalR1 and GalR2 mRNA levels were higher in the large than in the small intestine. GalR2 mRNA was most abundant in the stomach. GalR3 mRNA levels were generally quite low. The differential regional distribution of GalRs suggests that the complex effects of galanin in the gut are the result of activating multiple receptor subtypes, whose density, subtype and signaling vary along the gastrointestinal tract.  相似文献   

10.
The aim of this study was to compare immunoreactivities for substance P with other enteric neuropeptides and GAP-43, a general marker for enteric nerves, in normal human colon and in different stages of ulcerative colitis. Tissue samples from normal colon and regions of ulcerative colitis colon were obtained at surgery and immunostained for substance P, vasoactive intestinal polypeptide (VIP), somatostatin, calcitonin gene-related peptide (CGRP), enkephalin, galanin, GAP-43, and neuron-specific enolase (NSE). Visual examination and semiquantitative analysis revealed a clear increase in the immunoreactivity for substance P in ulcerative colitis, whereas no differences were observed in the distribution of the other peptides. Therefore, quantitative analysis was performed only for substance P immunoreactivity in the lamina propria, circular muscle layer, and myenteric ganglia. In the lamina propria, the score of total intensity of substance P immunoreactivity was 0.55 +/- 0.15 (mean +/- SEM) in normal colon, 1.30 +/- 0.35 (p = 0.087) in least affected colon, and 2.22 +/- 0.28 (p < 0.001) in moderately affected colon, whereas no significant differences were observed in immunoreactivities for GAP-43. Similar results were obtained for the mean substance P- or GAP-43-immunoreactive area. In the circular muscle layer, the number, density, total intensity, and perimeter of substance P- and GAP-43-immunoreactive fibers were essentially similar in normal colon, and in mild or moderately affected colon. We conclude that ulcerative colitis does not change the density of gut innervation as a whole. However, the density of substance P-containing nerves is specifically increased, probably due to increased peptide synthesis leading to better visibility of the fibers.  相似文献   

11.
This immunohistochemical study in zebrafish aims to extend the neurochemical characterization of enteric neuronal subpopulations and to validate a marker for identification of interstitial cells of Cajal (ICC). The expression of neuropeptides and anoctamin 1 (Ano1), a selective ICC marker in mammals, was analyzed in both embryonic and adult intestine. Neuropeptides were present from 3 days postfertilization (dpf). At 3 dpf, galanin-positive nerve fibers were found in the proximal intestine, while calcitonin gene-related peptide (CGRP)- and substance P-expressing fibers appeared in the distal intestine. At 5 dpf, immunoreactive fibers were present along the entire intestinal length, indicating a well-developed peptidergic innervation at the onset of feeding. In the adult intestine, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), galanin, CGRP and substance P were detected in nerve fibers. Colchicine pretreatment enhanced only VIP and PACAP immunoreactivity. VIP and PACAP were coexpressed in enteric neurons. Colocalization stainings revealed three neuronal subpopulations expressing VIP and PACAP: a nitrergic noncholinergic subpopulation, a serotonergic subpopulation and a subpopulation expressing no other markers. Ano1-immunostaining revealed a 3-dimensional network in the adult intestine containing multipolar cells at the myenteric plexus and bipolar cells interspersed between circular smooth muscle cells. Ano1 immunoreactivity first appeared at 3 dpf, indicative of the onset of proliferation of ICC-like cells. It is shown that the Ano1 antiserum is a selective marker of ICC-like cells in the zebrafish intestine. Finally, it is hypothesized that ICC-like cells mediate the spontaneous regular activity of the embryonic intestine.  相似文献   

12.
Nitric oxide and various neuropeptides in the myenteric plexus regulate esophageal motility. We sought colocalization of nitric oxide synthase and neuropeptides in frozen sections of mid-portion of smoothmuscled opossum esophagus using NADPH-diaphorase activity to mark the synthase and immunoreactivity to detect peptides. The peptides, all with demonstrated physiological activity in this organ, were calcitonin generelated peptide, galanin, neuropeptide Y, substance P, and vasoactive intestinal polypeptide. The ExtrAvidin Peroxidase immunostain for each peptide was carried up to the final peroxidase reaction with 3-amino-9-ethylcarbazole. The NADPH-diaphorase reaction was applied with short incubation to provide light staining just before the peroxidase reaction was performed. We examined sections for the proportions of singly and dually labeled nerve cells in the myenteric plexus. NADPH-diaphorase activity was highly colocalized with calcitonin gene-related peptide (59%), galanin (54%), and vasoactive intestinal polypeptide (53%). It showed little colocalization with neuropeptide Y (10%) and substance P (8%). The proportions of all nerve cells containing each of the substances were: NADPH-diaphorase-33%, calcitonin gene-related peptide-30%, galanin-55%, neuropeptide Y-16%, substance P-35%, and vasoactive intestinal polypeptide-58%. We conclude that the nerves responsible for peristalsis in the esophagus may act by releasing nitric oxide along with other inhibitory substances, calcitonin gene-related peptide, galanin, and vasoactive intestinal polypeptide, but not excitatory substances, neuropeptide Y and substance P.  相似文献   

13.
The morphology and histology of the alimentary canal of the rock chiton Acanthopleura spinigera are described and the ability of regions of the gut to digest specific substrates investigated. The oesophagus is produced into a pair of thin-walled lateral pouches, the salivary glands or "sugar glands" which empty into the stomach. Folds of the capacious stomach are almost obscured by the large digestive gland over which is coiled the intestine. Histologically the gut consists of an outer layer of connective tissue, an inner muscular layer and a ciliated epithelium which varies in thickness from one region to the next. Proteases are most active in the stomach, digestive gland and anterior intestine at pH 6·5 and in the posterior intestine at pH 7·5-8·5. The digestion of lipoidal substance was greatest in the stomach and digestive gland and least in anterior intestine. There was little increase in the amount of digestion product obtained after 20 hours incubation. All regions of the alimentary canal and salivary gland were capable of digesting carbohydrates except that many low molecular weight carbohydrates were digested by salivary gland extracts only. The amylases were most active at pH 6–6·5. It is concluded that digestive enzymes are distributed throughout the intestinal tract but the amount of enzyme present varies from region to region, and is greatest just after feeding.  相似文献   

14.
The goal of this report is to summarise the current knowledge on the projection pathways of enteric neurones innervating the muscle and mucosa in different regions of the gut. Combination of neuronal tracing, immunohistochemical and electrophysiological methods has allowed researchers to gain insight into the enteric hardwiring of specific target tissue in the gut. A polarised innervation pattern of the circular muscle was demonstrated for the stomach fundus/corpus and the ileum with descending pathways being primarily nitrergic while ascending pathways were primarily cholinergic. This characteristic hardwiring is thought to set in part the functional basis for peristalsis. A similar polarised innervation pathway was found for the enteric innervation of the mucosa in the stomach and large intestine but not in the small intestine. In both the stomach (myenteric neurones) and in the proximal and distal colon (submucosal neurones), ascending pathways to the mucosa are primarily cholinergic while descending pathways are primarily non-cholinergic. In the colon, results suggest that activation of both pathways induces a cross potentiation of cholinergic and vasoactive intestinal polypeptidergic mediated secretion. Furthermore, a large population of myenteric neurone s projecting to the mucosa in the small and large intestine are probably intrinsic primary afferent neurones sensitive to mechanical as well as chemical stimuli.  相似文献   

15.
16.
Summary The intramural distribution of vasoactive intestinal polypeptide (VIP), substance P, somatostatin and mammalian bombesin was studied in the oesophago-gastro-pyloric region of the human gut. At each of 21 sampling sites encompassing this entire area, the gut wall was separated into mucosa, submucosa and muscularis externa, and extracted for radioimmunoassay. VIP levels in the mucosa were very high in the proximal oesophagus (1231±174 pmol/g, mean±SEM) and showed varied, but generally decreasing concentrations towards the stomach, followed by a clear-cut increase across the pyloric canal (distal antrum: 73±16 pmol/g, proximal duodenum: 366±62 pmol/ g); consistent levels were found in submucosa and muscle (200–400 pmol/g) at most sites, the stomach again showing lower concentrations. By contrast, substance P was present in small amounts as far as the proximal stomach, but sharply increased across the pyloric canal, especially in mucosa and submucosa (distal antrum: 20±6.5 and 5.5±1.3 pmol/g; proximal duodenum: 62±8.5 and 34±11 pmol/g, respectively). Somatostatin concentrations were very low in the mucosa of the oesophagus and stepwise increased in the cardiac, mid-gastric and pyloric mucosa (cardia: 224±72 pmol/g; distal antrum: 513±152 pmol/g; proximal duodenum: 1013±113 pmol/g); concentrations in the submucosa and muscularis were generally low, with the exception of antrum and duodenum. Mammalian bombesin was comparatively well represented throughout the oesophageal muscularis (5–8 pmol/g), but most abundant in the stomach in all layers (oxyntic mucosa: 24±2.7 pmol/g; submucosa: 20±5.7 pmol/g; muscle: 28±5.0 pmol/g). In conclusion, a distinct differential distribution of the four peptides studied was revealed, indicating a diffuse, but highly differentiated peptide-containing innervation of the proximal human gut.  相似文献   

17.
The distribution of intrinsic enteric neurons and extrinsic autonomic and sensory neurons in the large intestine of the toad, Bufo marinus, was examined using immunohistochemistry and glyoxylic acid-induced fluoresecence. Three populations of extrinsic nerves were found: unipolar neurons with morphology and location typical of parasympathetic postganglionic neurons containing immunoreactivity to galanin, somatostatin and 5-hydroxytryptamine were present in longitudinally running nerve trunks in the posterior large intestine and projected to the muscle layers and myenteric plexus throughout the large intestine. Sympathetic adrenergic fibres supplied a dense innervation to the circular muscle layer, myenteric plexus and blood vessels. Axons containing colocalized calcitonin gene-related peptide immunoractivity and substance P immunoreactivity distributed to all layers of the large intestine and are thought to be axons of primary afferent neurons. Five populations of enteric neurons were found. These contained immunoreactivity to vasoactive intestinal peptide, which distributed to all layers of the large intestine; galanin/vasoactive intestinal peptide, which projected to the submucosa and mucosa; calcitonin gene-related peptide/vasoactive intestinal peptide, which supplied the circular muscle, submucosa and mucosa; galanin, which projected to the submucosa and mucosa; and enkephalin, which supplied the circular muscle layer.  相似文献   

18.
The distribution and colocalization of neuropeptides and 5-hydroxytryptamine in the posterior portion of the large intestine of the toad was studied using single- and dual-label immunohistochemistry. Neurons containing colocalized galanin/somatostatin or vasoactive intestinal peptide alone were observed along intramural pelvic nerves. Some of the galanin/somatostatin neurons also contained 5-hydroxytryptamine. Synaptic boutons containing colocalized calcitonin gene-related peptide/vasoactive intestinal peptide were associated with the galanin/somatostatin neurons. The muscle of the large intestine was also innervated by axons containing galamin/somatostatin, vasoactive intestinal peptide/calcitonin gene-related peptide or vasoactive intestinal peptide alone. Nerve fibres containing calcitonin gene-related peptide/substance P, probably representing primary afferent nerves, were also associated with muscle bundles. Submucosal blood vessels carried dense plexuses of fibres containing vasoactive intestinal peptide alone or and calcitonin gene-related peptide/substance P. Adrenergic perivascular nerves also contained galanin and neuropeptide Y.  相似文献   

19.
Galanin modulates gastrointestinal motility by inhibiting the release of ACh from enteric neurons. It is, however, not known whether galanin also inhibits neuronal cholinergic transmission postsynaptically and whether galanin also reduces the action of other excitatory neurotransmitters. The aim of the present study was thus to investigate the effect of galanin on the evoked intracellular Ca(2+) concentration ([Ca(2+)](i)) responses in myenteric neurons. Cultured myenteric neurons from small intestine of adult guinea pigs were loaded with the Ca(2+) indicator fluo-3 AM, and the [Ca(2+)](i) responses following the application of different stimuli were quantified by confocal microscopy and expressed as a percentage of the response to high-K(+) solution (75 mM). Trains of electrical pulses (2 s, 10 Hz) were applied to stimulate the neuronal fibers before and after a 30-s superfusion with galanin (10(-6) M). Substance P (SP), 5-HT, 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP), and carbachol were used as direct postsynaptic stimuli (10(-5) M, 30 s) and were applied alone or after galanin perfusion. Galanin significantly reduced the responses induced by electrical fiber stimulation (43 +/- 2 to 35 +/- 3%, P = 0.01), SP (15.4 +/- 1 to 8.0 +/- 0.3%, P < 0.01), and 5-HT (26 +/- 2 to 21.4 +/- 1.5%, P < 0.05). On the contrary, galanin did not affect the responses induced by local application of DMPP and carbachol. We conclude that in cultured myenteric neurons, galanin inhibits the excitatory responses induced by electrical stimulation, SP, and 5-HT. Finally, the inhibitory effect of galanin on electrical stimulation, but not on DMPP- and carbachol-induced responses, suggests that, at least for the cholinergic component, galanin acts at the presynaptic level.  相似文献   

20.
Autoinhibition of acetylcholine release by the coexisting peptide galanin in the septal afferents to the hippocampus of the rat was examined in tissue slices from the hippocampus. Galanin inhibits the evoked release of the coexisting neurotransmitter, acetylcholine, in the ventral hippocampus, providing an example of autoinhibition of release of a neurotransmitter by one of the coexisting neurotransmitters. The galanin mediated inhibition of the acetylcholine release is a complement to the well known strong cholinergic autoinhibition. The effects of the coexisting galanin and acetylcholine on several second messenger systems were also examined: acetylcholine acting at muscarinic receptors depresses cyclic adenosine 3',5'-monophosphate and stimulates elevation of cyclic guanosine 3',5'-monophosphate levels, whereas neither cyclic adenosine 3',5'-monophosphate nor cyclic guanosine 3',5'-monophosphate levels were affected by galanin (1 microM). Galanin however inhibited partly the muscarinic stimulation of phosphoinositide breakdown, suggesting that inositol phosphate(s) or diacylglycerol may act as second messenger(s) of the galanin action in the hippocampus. The effects of chronic changes in firing rate on the coexisting neurotransmitters in the rat ventral spinal cord containing serotonin, thyrotropin releasing hormone, substance P and substance K were examined. The tissue levels of the coexisting transmitters were studied in rats chronically treated with imipramine (14 days; 2 x 10 mumoles/kg/day) and zimelidine (14 days; 2 x 10 mumoles/kg/day). Upon treatment with zimelidine the tissue levels of the serotonin metabolite 5-hydroxyindoleacetic acid fall by 32% while thyrotropin releasing hormone levels seem to increase 35% and substance P/substance K levels also increase 48 and 72% respectively. Imipramine treatment resulted in similar although less pronounced changes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号