首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2,3,4,6-Tetra-O-benzyl-1-O-(N-benzyloxycarbonyldipeptidyl)-D-glucopyranoses (15) were synthesized from 2,3,4,6-tetra-O-benzyl-α-D-glucopyranose and pentachlorophenyl esters of N-benzyloxycarbonyldipeptides in the presence of imidazole; the anomeric mixtures were resolved and the α and β anomers were characterized. Catalytic hydrogenation of the β anomers of 13, having aglycon groups containing aliphatic amino acid residues, afforded the corresponding 1-O-dipeptidyl-β-D-glucopyranoses, which were characterized as the mono-oxalates 68; 6 and 7 were converted into the N-acetyl derivatives 9 and 10, which were also prepared by definitive methods. Hydrogenolysis of the β anomers of 4 and 5, having aglycon groups containing Phe-Gly and Gly-Phe residues, led to intramolecular aminolysis with scission of the glycosidic ester bond to give 3-benzylpiperazine-2,5-dione and D-glucose. Selective N-deprotection of afforded 2,3,4,6-tetra-O-benzyl-1-O-(glycyl-DL-phenylalanyl)-β-D-glucopyranose (13β), and complete deprotection of gave 1-O-(glycyl-DL-phenylalanyl)-α-D-glucopyranose (14) as the preponderant products; in both cases, intramolecular cyclisation of the aglycon group was a minor reaction. The results suggest that the balance between the formation of free D-glucosyl ester and the respective piperazinedione derivative depends primarily upon the nature and the sequence of the amino acids involved, and to a lesser extent upon the nature of substituents and the anomeric configuration of the sugar component.  相似文献   

2.
Ammonium hydroxide treatment of 1,6:2,3-dianhydro-4-O-benzyl-β-D-mannopyranose, followed by acetylation, gave 2-acetamido-3-O-acetyl-1,6-anhydro-4-O-benzyl-2-deoxy-β-D-glucopyranose which was catalytically reduced to give 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose (6), the starting material for the synthesis of (1→4)-linked disaccharides bearing a 2-acetamido-2-deoxy-D-glucopyranose reducing residue. Selective benzylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose gave a mixture of the 3,4-di-O-benzyl derivative and the two mono-O-benzyl derivatives, the 4-O-benzyl being preponderant. The latter derivative was acetylated, to give a compound identical with that just described. For the purpose of comparison, 2-acetamido-4-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose has been prepared by selective acetylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose.Condensation between 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and 6 gave, after acetolysis of the anhydro ring, the peracetylated derivative (17) of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose. A condensation of 6 with 3,4,6-tri-O-acetyl-2-deoxy-2-diphenoxyphosphorylamino-α-D-glucopyranosyl bromide likewise gave, after catalytic hydrogenation, acetylation, and acetolysis, the peracylated derivative (21) of di-N-acetylchitobiose.  相似文献   

3.
The 2,3,4,6-tetra-O-benzyl-1-O-(N-benzyloxycarbonyltripeptidyl)-D-glucopyranoses 1, 8, and 13 were synthesised from 2,3,4,6-tetra-O-benzyl-α-D-glucopyranose and the active esters of the appropriate N-protected tripeptides (Gly-Gly-Gly-, L-Phe-Gly-Gly-, and Gly-Gly-L-Phe-) in the presence of imidazole; the anomeric mixtures were resolved and the α and β anomers characterised. The β anomer of 13, containing the L and D enantiomers (ratio ≈ 3:1) of Gly-Gly-Phe- as the aglycon, could be resolved by column chromatography into the pure isomeric forms. Catalytic hydrogenolysis of the β anomers, in the presence and absence of a strong acid, yielded the free 1-esters , , and 14β, which were characterised as the monooxalate or trifluoroacetate salts and as free bases. Similarly, the α anomers afforded , , and 14α, whereas omission of the strong acid led to accompanying 1→2 acyl migration, to give the 2-O-acyl derivatives. All of the compounds prepared were converted into the N-acetyl and/or peracetylated derivatives. The 1-esters and , both in the charged and uncharged form, and the trifluoroacetate salt of 14β, are susceptible to cleavage by β-D-glucosidase; the enzyme had no effect on the uncharged form of 14β. This difference between 14β and its salt is discussed in conformational terms.  相似文献   

4.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

5.
《Carbohydrate research》1986,154(1):93-101
O-β-d-Galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose has been synthesised by reaction of benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-d-galactopyranosyl)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide in the presence of mercuric bromide, followed by hydrogenolysis. Benzylation of benzyl 3′,4′-O-isopropylidene-β-lactoside, via tributylstannylation, in the presence of tetrabutylammonium bromide or N-methylimidazole, gave benzyl 2,6-di-O-benzyl-4-O-(6-O-benzyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (6). α-Fucosylation of 6 in the presence of tetraethylammonium bromide provided either benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyransoyl)-β-d- galactopyranosyl]-β-d-glucopyranoside (13, 73%) or a mixture of 13 (42%) and benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4,-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d- galactopyranosyl-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (16, 34%). α-Fucosylation of 13 in the presence of mercuric bromide and 2,6-di-tert-butyl-4-methylpyridine gave 16 (73%). Hydrogenolysis and acid hydrolysis of 13 and 16 afforded O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-d-glucose and O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose, respectively.  相似文献   

6.
Photoirradiation of a solution of 1,2,4,6-tetra-O-acetyl-3-deoxy-β-D-erythro-hex-2-enopyranose (1) in 1:50 acetone-1,3-dioxolane with a high-pressure mercury-lamp, followed by chromatographic separation, gave 1,2,4,6-tetra-O-acetyl-3-deoxy-3-C-(1,3-dioxolan-2-yl)-β-D-glucopyranose (3) (44%) and-mannopyranose (4) (35%). Similar treatment of the α anomer (2) of 1 afforded 1,2,4,6-tetra-O-acetyl-3-deoxy-3-C-(1,3-dioxolan-2-yl)-α-D-glucopyranose (5) (38%), -mannopyranose (6) (31%), and -allopyranose (7) (21%).On the other hand, irradiation of 2 in 1:100 acetone-2-propanol gave 1,2,4,6-tetra-O-acetyl-3-deoxy-3-C-(1-hydroxy-1-methylethyl)-α-D-mannopyranose (8) (76%). Moreover, irradiation of 2 in 1:1 acetone-2-propanol yielded 1,4,6-tri-O-acetyl-3-deoxy-2,3-di-C-(1-hydroxy-1-methylethyl)-α-D-gluco- or -manno-pyranose 2,21,31-orthoacetate (10) (15%), in addition to 8 (44%).  相似文献   

7.
Methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside, methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside, and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside, prepared from methyl 2-acetamido-2-deoxy-α-D-glucopyranoside, were coupled with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate (13), to give the phosphoric esters methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (16), methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (23), and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (17). Compound 13 was prepared from penta-O-acetyl-β-D-glucopyranose by the phosphoric acid procedure, or by acetylation of α-D-glucopyranosyl phosphate. Removal of the allyl groups from 16 and 17 gave 23 and methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (19), respectively. O-Deacetylation of 23 gave methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (26) and O-deacetylation of 19 gave methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (24). Propyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (25) was prepared by coupling 13 with allyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranoside, followed by catalytic hydrogenation of the product to give the propyl glycoside, which was then O-deacetylated. Compounds 24, 25, and 26 are being employed in structural studies of the Micrococcus lysodeikticus cell-wall.  相似文献   

8.
The condensation of 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl bromide and 2,3,4,6-tetra-O-benzyl-D-mannopyranosyl chloride with benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside (1), under Koenigs-Knorr conditions, gave the fully benzylated derivatives of benzyl 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranoside, benzyl 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranoside, and benzyl 2-acetamido-2-deoxy-4-O-α-D-mannopyranosyl-α-D-glucopyranoside. Three further compounds, namely, benzyl 2-acetamido-3-O-benzyl-2-deoxy-6-O-(2,3,4,6-tetra-O-benzyl-D-glucopyranosyl)-α-D-glucopyranoside, benzyl 2-acetamido-3-O-benzyl-2-deoxy-6-O-(2,3,4,6-tetra-O-benzyl-D)-mannopyranosyl)-α-D-glucopyranoside, and benzyl 2-acetamido-3-O-benzyl-2-deoxy-4,6-di-O-(2,3,4,6-tetra-O-benzyl-D-mannopyranosyl)-α-D-glucopyranoside, were formed by reaction of the respective glycosyl halide with benzyl 2-acetamido-3-O-benzyl-2-deoxy-α-D-glucopyranoside present as contaminant in 1.  相似文献   

9.
Addition of 2-amino-2-deoxy-β-D-glucopyranose to dimethyl acetylenedicarboxylate afforded an almost quantitative yield of amorphous 2-deoxy-2-(1,2-dimethoxycarbonylvinyl)amino-D-glucose (5). Acetylation of this adduct gave crystalline 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[(Z)-1,2-dimethoxycarbonylvinyl]amino-α-D-glucopyranose (6a); the corresponding β-D anomer (6b) was obtained by addition of 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-Dglucopyranose to dimethyl acetylenedicarboxylate. O-Deacetylation of tetra-acetate 6a with barium methoxide in methanol occurred selectively at C-1, yielding enamine 6c derived from 3,4,6-tri-O-acetyl-2-amino-2-deoxy-α-D-glucopyranose. Conversion of the crude adduct 5 into 3-methoxycarbonyl-5-(D-arabino-tetrahydroxybutyl)-2-pyrrolecarboxylic acid (7) took place by heating in water or in slightly basic media in yields up to 83%. Acetylation of 7 gave the tricyclic derivative 8, and its periodate oxidation afforded 5-formyl-3-methoxycarbonyl-2-pyrrolecarboxylic acid (9). Oxidation of 9 with alkaline silver oxide yielded 3-methoxy-carbonyl-2,5-pyrroledicarboxylic acid (10).  相似文献   

10.
The syntheses of 2,3,4,6-tetra-O-acetyl-1-S-dimethylarsino-1-thio-β-D-glucopyranose (3), 2,3,4,6-tetra-O-acetyl-1-Se-dimethylarsino-1-seleno-β-D-glucopyranose (4), 1-S-dimethylarsino-1-thio-β-D-glucopyranose (5), and -1-Se-dimethylarsino-1-seleno-β-D-glucopyranose (7) are described. The n.m.r., Raman, and mass-spectral properties of the compounds are given. 3-O-Diethylarsino-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose has also been prepared, but characterized only by n.m.r. spectroscopy.  相似文献   

11.
Syntheses of 2-Se-(1,2,3,4-tetra-O-acetyl-β-D-glucopyranosyl)-3-N,N-dimethyl-selenopseudourea hydroiodide (3), 1,2,3,4-tetra-O-acetyl-6-S-dimethylarsino-6-thio-β-D-glucopyranose (4), 1,2,3,4-tetra-O-acetyl-6-Se-dimethylarsino-6-seleno-β-D-glucopyranose (7), 6-S-dimethylarsino-6-thio-β-D-glucopyranose (5), and 6-Se-dimethylarsino-6-seleno-β-D-glucopyranose (9) are described. Various spectral properties of the compounds are given. The relative rates of alkaline hydrolysis of 5 and 9 are compared.  相似文献   

12.
2-Acetamido-2- deoxy-6-O-, -xylopyranosyl-O-D-glucopyranose has been synthesized in crystalline form by condensation of 2,3,4-tri-O-acetyl-α-D-xylopyranosyl chloride (1) with benzyl 2-acetamido-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranoside (2), followed by O-deacetylation and catalytic hydrogenation. Condensation of 2 with 2,3,4-tri-O-chlorosulfonyl-β-D-xylopyranosyl chloride, followed by dechlorosulfonylation and acetylation, gave benzyl 2-acetamido-3,4-di-O-acetyl-2-deoxy-6-O-(2,3,4-tri-O-acetyl-α-D-xylopyranosyl)β-D-glucopyranoside in crystalline form. O-Deacetylation, followed by catalytic hydrogenation, gave 2-acetamido-2-deoxy-6-O-α-D-xylopyranosyl-α-D-glucopyranose in crystalline form.  相似文献   

13.
Oxidation of 1,3,4,6-tetra-O-benzoyl-α- and β-D-glucopyranose gave the tetra-O-benzoyl-α- and -β-D-arabino-hexopyranosuloses ( and β), from which benzoic acid was readily eliminated to give the anomeric tri-O-benzoyl-4-deoxy-D-glycero-hex-3-enopyranosuloses ( and β). The anomeric 1-O-acetyl-tri-O-benzoyl-D-arabino-hexopyranosuloses ( and β) were obtained as very unstable syrups which readily lost benzoic acid. Treatment of tetra-O-benzoyl-2-O-benzyl-D-glucopyranose (1) with hydrogen bromide gave 3,4,6-tri-O-benzoyl-α-D-glucopyranosyl bromide (5) in one step.  相似文献   

14.
Decarboxylative elimination of methyl 2,3-di-O-benzyl-α-D-glucopyranosiduronic acid (1) with N,N-dimethylformamide dineopentyl acetal in N,N-dimethylformamide gave methyl 2,3-di-O-benzyl-4-deoxy-β-L-threo-pent-4-enopyranoside (3). Debenzylation of 3 was effected with sodium in liquid ammonia to give methyl 4-deoxy-β-L-threo-pent-4-enopyranoside (4). Hydrogenation of 3 catalyzed by palladium-on-barium sulfate afforded methyl 2,3-di-O-benzyl-4-deoxy-β-L-threo-pentopyranoside (5), whereas hydrogenation of 3 over palladium-on-carbon gave methyl 4-deoxy-β-L-threo-pentopyranoside (6). An improved preparation of methyl 4,6-O-benzylidene-α-D-glucopyranoside is also described.  相似文献   

15.
1-O-(Acylaminoacyl)-2,3,4,6-tetra-O-benzyl-D-glucopyranoses were prepared in high yields by two routes involving direct participation of imidazole in the ester linkage formation; namely, (a) the accelerated active-ester method, and (b) the imidazole-promoted dicyclohexylcarbodiimide condensation. The compounds were synthesized from 2,3,4,6-tetra-O-benzyl-α-D-glucopyranose and pentachlorophenyl esters of optically active benzyloxycarbonyl- and tert-butyloxycarbonyl-amino acids in method (a) or benzyloxycarbonyl- and acetyl-amino acids in method (b). By both methods, anomeric mixtures of D-glucosyl esters were obtained; they were resolved by column chromatography and the α and β anomers were fully characterized. The retention of configuration of the amino acid moiety was determined from optical rotations of acylamino acid methyl esters formed from D-glucosyl esters with methanolic sodium methoxide. With benzyloxycarbonyl and tert-butyloxycarbonyl protecting groups, a high degree of retention of optical activity was established in both methods-method (a) being slightly superior.  相似文献   

16.
Benzylation of methyl 2,3-anhydro-4-O-[2-O-benzyl-3,4-di-O-(β-D-xylop yranosyl]-β-D-xylopyranosyl]-β-D-ribopyranoside (1) afforded the crystalline. fully benzylated tetrasaccharide derivative 2. The octa-O-benzyl derivative 3, having only HO-2 unsubstituted, obtained by treatment of 2 with benzyl alcoholate anion in benzyl alcohol, was allowed to react in dichloromethane with methyl 2,3-di-O-benzyl- 1-chloro-1-deoxy-4-O-methy]-α,β-glucopyranuronate in the presence of silver perchlorate and triethylamine to give the branched, 4-O-methyl-α-D-glucuronic acid-containing pentasaccharide derivative 4a as the major product. Subsequent debenzylation afforded the aldopentaouronic acid derivative 5a, which contains all the basic structural features of branched, hardwood (4-O-methylglucurono)xylans. The structure of 5a was confirmed by analysis of its 13C-n.m.r. spectrum and the mass-spectral fragmentation pattern of the corresponding fully methylated derivative 6a.  相似文献   

17.
The Halide ion-catalysed reaction of benzyl exo-2,3-O-benzylidene-α-l-rhamnopyranoside with tetra-O-benzyl-α-d-galactopyranosyl bromide and hydrogenolysis of the exo-benzylidene group of the product 2 gave benzyl 3-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl)-α-l-rhamnopyranoside (6). Compound 2 was converted into 4-O-α-d-galactopyranosyl-l-rhamnose. The reaction of 6 with tetra-O-acetyl-α-d-glucopyranosyl bromide and removal of the protecting groups from the product gave 4-O-α-d-galactopyranosyl-2-O-β-d-glucopyranosyl-l-rhamnose.  相似文献   

18.
《Carbohydrate research》1987,166(2):211-217
6-O-Benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto-oct-7-ynopyranose reacted with tributyltin hydride to afford (Z-6-O-benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-8-(tributylstannyl)-l-glycero-α-d-galacto-oct-7-enopyranose, which was subsequently isomerized to the E-olefin 4. Replacement of the tributyltin moietey with lithium in 4 afforded the vinyl anion which reacted with 3-O-benzyl-1,2-O-isopropylidene-α-d-xylo-pentodialdo-1,4-furanose, furnishing 3-O-benzyl-6-C-[(E)-6-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto-heptopyranos-7-ylidene] -60-deoxy-1,2-O-isopropylidene-α-d-gluco- (6) and -β-l-ido-furanose (7) in yields of ∼70 or ∼87% (depending on the temperature of the reaction). The configurations of the new chiral centers in 6 and 7 were determined by their conversion into 3-O-benzyl-1,2-O-isopropylidene-α-d-gluco- and -β-l-ido-furanose, respectively. Oxidation of 6 and 7 gave the same enone, 3-O-benzyl-6-C-[(E)-6-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto- heoptopyranos-7-ylidene]-6-deoxy-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulose.  相似文献   

19.
《Carbohydrate research》1986,149(2):347-361
Glycosylation of 1,2:3,4-di-O-isopropylidene-α-d-galactopyranose (6), as well as its 6-trimethylsilyl ether 7 with 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl fluoride (5) was achieved stereospecifically in a mild and fast manner in the presence of Lewis acids like, e.g., titanium tetrafluoride, to give the β-(1→6)-linked disaccharide derivative 1. By use of 2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl fluoride (8) or its α anomer 10 and titanium tetrafluoride in acetonitrile with 6 or 7, a fast reaction proceeds preponderantly to yield 1,2:3,4-di-O-isopropylidene 6-O-(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)-α-d-galactopyranose (2). In ether, however, mainly the α-(1→6) anomer was formed. These model systems were used to elucidate the limiting conditions for this procedure, and mechanistic conceptions are discussed. By glycosylation at O-4 of 1,6:2,3-dianhydro-β-d-mannopyranose (11) with the perbenzylated α-fluoride 10 both the α- and the β-d-(1→4) disaccharide derivatives 12 and 14 were obtained, but 5 gave exclusively the β-d-(1→4) compound 16. Opening of the anhydro rings of 12 led to the synthesis of N-acetyl-maltosamine (22). 1,6-Anhydro-2-azido-4-O-benzyl-2-deoxy-β-d-glucopyranose was glycosylated with methyl (2,3,4-tri-O-acetyl-β-d-galactopyranosyl fluoride)uronate under titanium tetrafluoride catalysis to give the β-d-(1→3)-linked disaccharide 16, subsequently transformed into 29.  相似文献   

20.
Reaction of 2,3-di-O-acetyl-1,6-anhydro-β-D-galactopyranose (2) with 2,3,4,6-tetra- O-acetyl-α-D-galactopyranosyl bromide in the presence of mercuric cyanide and subsequent acetolysis gave 1,2,3,6-tetra-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)-α-D-galactopyranose (4, 40%) and 1,2,3,6-tetra-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-α-D-galactopyranose (5, 30%). Similarly, reaction of 2,4-di-O-acetyl-1,6-anhydro-β-D-galactopyranose (3) gave 1,2,4,6-tetra-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)-α-D-galactopyranose (6, 46%) and 1,2,4,6-tetra-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-α-D-galactopyranose (7, 14%). The anomeric configurations of 4-7 were assigned by n.m.r. spectroscopy. Deacetylation of 4-7 afforded 4-O-α-D-galactopyranosyl-D-galactose (8), 4-O-β-D-galactopyranosyl-D-galactose (9), 3-O-α-D-galactopyranosyl-D-galactose (10), and 3-O-β-D-galactopyranosyl-D-galactose (11), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号