首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An oxidized form of ovine erythrocyte GSH peroxidase (Form C) that contains bound glutathione in equimolar ratio to the enzyme selenium is inactivated by cyanide. When Form C was treated with 1 or 10 mM KCN at pH 7.5, there was a rapid increase in ultraviolet absorption at 250 nm, S-cyanoglutathione was released, and the enzyme was reduced, as shown by inactivation with iodoacetate (1 mM, pH 7.5) and uptake of label from [14C]iodoacetate in equimolar ratio to enzyme selenium. These observations suggest that glutathione is bound to enzyme selenium by a selenenyl-sulfide linkage (E-Se-SG) which is cleaved by cyanide to release a selenol and S-cyanoglutathione; spontaneous oxidation of the selenol to a labile oxidized form of GSH peroxidase leads to irreversible inactivation.  相似文献   

2.
植物硒素营养及其机理研究进展   总被引:12,自引:2,他引:10  
土壤生境中Se的丰缺对植物的Se素营养有重要的影响。本文阐述了植物对Se的吸收,积累和运移过程,概述了Se对植物的毒性,对植物产量和品质影响及其机理研究的进展,在此基础上,提出以研究Se对土壤酶活性影响来解释Se对植物的必要性的新途径。  相似文献   

3.
Referee: Dr. Dean A. Martens, USDAARS Southwest Watershed, Research Center, 200 E. Allen Road, Tucson, AZ 85719 Phytoremediation is the use of plants to remove, contain, or render harmless environmental pollutants. In recent years, much attention has been focused on the improvement of such technologies for this purpose. In this review, we introduce selenium phytoremediation and describe the attempts made to enhance it through genetic engineering. Initial efforts have taken advantage of the knowledge of the enzymatic pathways for selenium assimilation and volatilization, especially by overexpressing genes of rate-limiting enzymes in plants. Another possible approach is to introduce additional metabolic pathways from selenium hyperaccumulators or organisms other than plants that can help detoxify selenium compounds. In this way the capacity of plants to take up, accumulate, and volatilize compounds can be increased beyond that of any naturally occurring plant species. Here we report on the progress that has been made in overexpressing potentially important enzymes involved in the selenium/sulfur pathways and discuss possible future directions in the enhancement of phytoremediation through genetic engineering.  相似文献   

4.
It has been established that the hydrogenase from autotrophically cultured Bradyrhizobium japonicum contains selenium as a bound constituent. About 80% of the enzyme selenium remains bound during precipitation with 5% trichloroacetic acid (TCA). However, 85% of the selenium bound to the enzyme is released by a combined treatment of urea, heat and TCA. Neither selenomethionine nor selenocysteine could be detected on analysis of anaerobically hydrolyzed enzyme. These results are consistent with the report showing that the structural genes for this enzyme do not contain a TGA codon (Sayavedra-Soto et al. 1988) which has been reported to code for selenocysteine incorporation into several proteins (Chambers et al. 1986; Zinoni et al. 1986; Stadtman 1987). We have demonstrated that 75Se from the labeled hydrolyzed enzyme forms the derivative' selenodicysteine. The form of selenium resulting in the synthesis of this derivative apparently is SeO inf3 sup= or a compound such as Se= which is easily oxidized to SeO inf3 sup= . In a separate approach it was established that 12–16% of the total 75Se in the native enzyme reacted with 2,3-diaminonaphthalene indicating that this fraction was present as SeO inf3 sup= . The remaining 75Se was bound to the enzyme protein. From this research, we concluded that Se in Bradyrhizobium japonicum hydrogenase is present in a labile bound form. In this respect, this enzyme is similar to xanthine dehydrogenase and nicotinic acid hydroxylase, both of which contain labile Se constituents that have not been defined.Technical paper no. 8980 from the Oregon Agricultural Experiment Station  相似文献   

5.
The nicotinic acid hydroxylase from Clostridium barkeri is a selenoenzyme, as evidenced by the copurification of selenium with enzyme activity. This conclusion is supported by data showing a 23-fold increase in nicotinic acid hydroxylase activity when C. barkeri was cultured in media supplemented with selenium. A labile, selenium-containing compound was released from the native protein by treatment with either chaotropic agents and heat or by heating alone. A stable selenium compound was formed when the enzyme was alkylated prior to denaturation. This compound had the same chromatographic properties as dialykyl selenide in a number of systems. The formation of dialkyl selenide upon alkylation is not consistent with the selenium moiety being selenocysteine. Thus, nicotinic acid hydroxylase represents a new type of selenoenzyme.  相似文献   

6.
J D Satterlee  J E Erman 《Biochemistry》1991,30(18):4398-4405
Proton NMR assignments of the heme pocket and catalytically relevant amino acid protons have been accomplished for cyanide-ligated yeast cytochrome c peroxidase. This form of the protein, while not enzymatically active itself, is the best model available (that displays a resolvable proton NMR spectrum) for the six-coordinate low-spin active intermediates, compounds I and II. The assignments were made with a combination of one- and two-dimensional nuclear Overhauser effect methods and demonstrate the utility of NOESY experiments for paramagnetic proteins of relatively large size (Mr 34,000). Assignments of both isotope exchangeable and nonexchangeable proton resonances were obtained by using enzyme preparations in both 90% H2O/10% D2O and, separately, in 99.9% D2O solvent systems. Complete resonance assignments have been achieved for the proximal histidine, His-175, and His-52, which is a member of the catalytic triad on the distal side of the heme. In addition, partial assignments are reported for Trp-51 and Arg-48, catalytically important residues, both on the distal side. Aside from His-175, partial assignments for amino acids on the proximal side of the heme are proposed for the alanines at primary sequence positions 174 and 176 and for Thr-180 and Leu-232.  相似文献   

7.
It is likely that several of the biological effects of selenium are due to its effects on selenoprotein activity. While the effects of the anti-oxidant selenoprotein glutathione peroxidase (GPx) on inhibiting HIV activation have been well documented, it is clear that increased expression of this enzyme can stimulate the replication and subsequent appearance of cytopathic effects associated with an acutely spreading HIV infection. The effects of GPx on both phases of the viral life cycle are likely mediated via its influence on signaling molecules that use reactive oxygen species, and similar influences on signaling pathways may account for some of the anti-cancer effects of selenium. Similarly, selenium can alter mutagenesis rates in both viral genomes and the DNA of mammalian cells exposed to carcinogens. Comparisons between the effects of selenium and selenoproteins on viral infections and carcinogenesis may yield new insights into the mechanisms of action of this element.  相似文献   

8.
Mercury Toxicity and the Mitigating Role of Selenium   总被引:1,自引:0,他引:1  
Mercury is a well-known environmental toxicant, particularly in its most common organic form, methylmercury. Consumption of fish and shellfish that contain methylmercury is a dominant source of mercury exposure in humans and piscivorous wildlife. Considerable efforts have focused on assessment of mercury and its attendant risks in the environment and food sources, including the studies reported in this issue. However, studies of mercury intoxication have frequently failed to consider the protective effects of the essential trace element, selenium. Mercury binds to selenium with extraordinarily high affinity, and high maternal exposures inhibit selenium-dependent enzyme activities in fetal brains. However, increased maternal dietary selenium intakes preserve these enzyme activities, thereby preventing the pathological effects that would otherwise arise in their absence. Recent evidence indicates that assessments of mercury exposure and tissue levels need to consider selenium intakes and tissue distributions in order to provide meaningful risk evaluations.  相似文献   

9.
Clostridium kluyveri incorporates selenium as selenomethionine into its acetoacetyl-CoA thiolase when grown in media containing normal sulfur-to-selenium ratios. Antibodies raised against the purified enzyme permitted quantitative immunoprecipitation of thiolase from crude cell extracts and thus facilitated the systematic analysis of the effects of wide variation in sulfur-to-selenium ratios on selenium incorporation into the enzyme. The extent of incorporation of selenium into thiolase was found to be dependent on the form of selenium supplied. When [75Se]selenomethionine was the source of selenium, the incorporation of selenium into thiolase was inversely proportional to the level of added methionine. However, similar levels of methionine failed to decrease the incorporation of selenium from selenite. To study the location of selenomethionine and methionine residues in the polypeptide chain of the enzyme, thiolase was prepared from cells cultured in the presence of H2 35SO4 or Na2 75SeO3. The 35S- or 75Se-labeled protein was treated with trypsin and the resulting peptides were isolated by reverse phase high performance liquid chromatography. The peptide maps of the enzyme indicated that selenium was distributed throughout the primary structure in a manner that paralleled methionine. From these studies, it is concluded that selenium occurs in thiolase adventitiously and is not required for any biological function.  相似文献   

10.
Among the activities of the essential trace element selenium is the ability to reduce the toxicity of heavy metal ions like cadmium(II) and mercury(II). Detoxification often depends on the metabolic reduction of selenium to hydrogen selenide; the mechanism generally advanced to explain such selenium/metal interactions is that selenide combines with heavy metal ions to give a metal selenide which is metabolically inert. However, this hypothesis does not consider circumstances where selenide is quickly removed by other reactions. Given the ease with which selenide is oxidized, such conditions are likely to occur in the blood plasma, an environmental rich in oxidizing agents and a site for many selenium/metal interactions. Using polarography to monitor both selenide and cadmium, we have found that selenide reacts rapidly in vitro with the disulfide bonds present in bovine serum albumin in preference to forming cadmium selenide. We hypothesize that a similar reaction occurs in the blood plasma with the disulfide bonds of plasma proteins to generate thiol groups on the protein involved, and that these newly formed thiols are responsible for the observed reduction of metal toxicity through the ability to chelate heavy metal ions.  相似文献   

11.
Hydrogen selenide ion (HSe-) is an important product in the metabolism of the essential trace element selenium. Although its role in selenium metabolism is recognized, aspects of the basic chemistry of selenide have been ignored, particularly the tendency of selenide to undergo rapid redox reactions with biological oxidants. Using polarography, we have found that selenide reacts in vitro with a variety of compounds including dehydroascorbic acid, quinones like vitamin K1 and FAD (flavin adenine dinucleotide), and disulfides such as oxidized glutathione and lipoic acid. The fact selenide reacts readily in vitro suggests similar reactions may also occur in vivo with important biological consequences. Contrary to expectations, selenide was found not to reduce the disulfide bond of oxidized dithiothreitol (trans-4,5-dihydroxyl-1,2-dithiane), indicating the commonly published value for the standard electrode potential of the selenium/hydrogen selenide ion couple is in error. The electrode potential is an important parameter to aid in anticipating possible redox reactions of selenide in vivo.  相似文献   

12.
M Bycroft  A R Fersht 《Biochemistry》1988,27(19):7390-7394
A spin-echo pulse sequence has been used to resolve the six histidine C-2H protons in the 500-MHz NMR spectrum of subtilisin BPN'. Five of these residues have been substituted by site-directed mutagenesis, and this has enabled a complete assignment of these protons to be obtained. Analysis of the pH titration curves of these signals has provided microscopic pKas for the six histidines in this enzyme. The pKas of the histidine residues in subtilisin BPN' have been compared with the values obtained for the histidines in the homologous enzyme from Bacillus licheniformis (subtilisin Carlsberg). Four of the five conserved histidines titrate with essentially identical pKa's in the two enzymes. It therefore appears that the assignments made for these residues in subtilisin BPN' can be transferred to subtilisin Carlsberg. On the basis of these assignments, the one histidine that titrates with a substantially different pKa in the two enzymes can be assigned to histidine-238. This difference in pKa has been attributed to a Trp to Lys substitution at position 241 in subtilisin Carlsberg.  相似文献   

13.
High serum selenium levels have been associated epidemiologically with increased incidence of type 2 diabetes. The major fraction of total selenium in serum is represented by liver-derived selenoprotein P (SeP). This study was undertaken to test for a hypothesized effect of hyperglycemia and the antihyperglycemic drug metformin on hepatic selenoprotein P biosynthesis. Cultivation of rat hepatocytes in the presence of high glucose concentrations (25 mmol/l) resulted in increased selenoprotein P mRNA expression and secretion. Treatment with metformin dose-dependently downregulated SeP mRNA expression and secretion, and suppressed glucocorticoid-stimulated production of SeP. Moreover, metformin strongly decreased mRNA levels of selenophosphate synthetase 2 (SPS-2), an enzyme essential for selenoprotein biosynthesis. Taken together, these results indicate an influence of metformin on selenium metabolism in hepatocytes. As selenoprotein P is the major transport form of selenium, metformin treatment may thereby diminish selenium supply to extrahepatic tissues.  相似文献   

14.
The biological activity of selenium is known to depend on its chemical form. In this study, eight forms of selenium that differed in oxidation state or degree of methylation were studied for their acute effects on the activities of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMet DC) and on the concentrations of the polyamines putrescine, spermidine, and spermine in the liver. The polyamine pathway was studied because it is involved in the control of cell growth and in the cell's response to trophic, carcinogenic, and toxic stimuli, activities that selenium has been reported to affect. Female Sprague Dawley rats were administered 12 mumol Se/kg body weight via intraperitoneal injection and were sacrificed six hours later. Injection of sodium selenate, sodium selenite, selenomethionine, Se-methylselenocysteine, selenobetaine, and selenobetaine methyl ester resulted in significant increases in liver selenium, whereas injection of dimethylselenoxide and trimethylselenonium chloride did not. ODC activity and AdoMet DC activity were induced by those selenium compounds that also increased liver selenium content, but the magnitude of enzyme induction by those compounds was not correlated with the hepatic concentration of total selenium determined fluorometrically. Furthermore, the induction of ODC activity by the various forms of selenium did not result in concomitant increases in putrescine, spermidine, and spermine except in the case of selenite. Given that alterations in the metabolism of selenium are induced when the level of tissue selenium is elevated and that the relative abundance of various selenometabolites can be affected by the point of entry of selenium into intermediary metabolism, these data suggest that the changes that were observed in enzyme activities and polyamine levels are likely to be associated with the accumulation of a specific metabolite of selenium. The relevance of these findings to elucidation of the biological activities attributable to various forms of selenium is under investigation.  相似文献   

15.
We have found a novel enzyme that exclusively decomposes L-selenocysteine into L-alanine and H2Se in various mammalian tissues, and have named it selenocysteine lyase. The enzyme from pig liver has been purified to homogeneity. It has a molecular weight of approximately 85,000, and contains pyridoxal 5'-phosphate as a coenzyme. Its maximum reactivity is at about pH 9.0. Balance studies showed that 1 mol of selenocysteine is converted to equimolar amounts of alanine and H2Se. The following amino acids are insert: L-cysteine, L-serine, L-cysteine sulfinate, selenocysteamine, Se-ethyl-DL-selenocysteine, and L-selenohomocysteine. L-Cysteine (Ki, 1.0 mM) competes with L-selenocysteine (Km, 0.83 mM) to inhibit the enzyme reaction. The enzyme is the first proven enzyme that specifically acts on selenium compounds.  相似文献   

16.
Numerous studies have suggested a significant role of selenium in the prevention of gynecological carcinoma. These were epidemiological and prospective in humans and therapeutic in laboratory animals. However, no studies have been reported regarding the normal serum selenium levels during pregnancy. The maternal total blood volume increases 30-50% during the second and third trimesters, resulting in lower measured serum levels for those metabolites, which are not increased significantly during pregnancy. A longitudinal study of the serum selenium levels in teenage pregnancy during the last two trimesters and 3 mo postpartum showed progressive elevation from 49 +/- 7 microg/dL after the 32nd week of pregnancy to 114 +/- 7 microg/dL at term, which was statistically significant (p < or = 0.001). Prenatal supplementation with 18 mg of iron per day prevented this elevation. The results of this study suggest that serum selenium levels in women normally double during pregnancy and this doubling is prevented by the minimal daily supplementation of 18 mg of iron, which may be due to increased absorption of selenium into the erythrocytes and incorporation into the glutathione peroxidase enzyme.  相似文献   

17.
Epilepsy is one of the oldest neurological conditions known to humankind. It is known that oxidative stress and generation of reactive oxygen species are a cause and consequence of epileptic seizures. Although recent years have seen tremendous progress in the molecular biology and metabolism of selenium, we still know little about the cell type-specific and temporal pattern of selenium and its derivatives in the brain of epileptic humans and experimental animals. It has been suggested that some antiepileptic drug therapies such as valproic acid, deplete the total body selenium level and selenium-dependent glutathione peroxidase (GSH-Px) activity although therapy with a new epileptic drug, topiramate, activated GSH-Px activity in epileptic animals and humans. An observation of lower blood or tissue selenium level and GSH-Px activity in epileptic patients and animals compared to controls in recent publications may support the proposed crucial role of selenium level and GSH-Px activity in the pathogenesis of epilepsy. Selenium is incorporated into an interesting class of molecules known as selenoproteins that contain the modified amino acid, selenocysteine. There are signs of selenium and selenoprotein deficiency in the pathogenesis of epilepsy. In conclusion, there is convincing evidence for the proposed crucial role of selenium and deficiency of GSH-Px enzyme activity in epilepsy pathogenesis. Blood GSH-Px activities could be a reliable indicator of selenium deficiency in patients with epilepsy.  相似文献   

18.
Chemical modification of the zinc metalloenzyme, carboxypeptidase A, with diazotized p-arsanilic acid labels the active-site tyrosyl-248 residue specifically, generating a visible chromophore, azotyrosine, that has been shown to be a sensitive, dynamic probe of the local environment of the active center. Resonance Raman spectroscopy has been used to study the vibrational modes of the azotyrosine probe at low concentrations (˜5 × 10-5 M) selectively. The frequencies and intensities of the bands in the resonance Raman spectra vary characteristically with pH and define different species of azotyrosyl-248 in solution. In the present study, an extensive spectral analysis of a series of azophenol model compounds and several of their 15N and 2H derivatives has been carried out in order to assign the bands that differentiate between and characterize these species. The effect of factors such as proton ionization, tautomeric isomerization, azo cis-trans isomerization, out-of-plane twisting of the azo group, rotameric equilibria, and aggregation on the spectra of these azo compounds is analyzed in detail. Specific modes associated with vibrational motions of both the central CNNC azo group and the adjacent aromatic rings of azotyrosine have been identified. These assignments enable the observed resonance Raman spectra of the azoenzyme to be interpreted in terms of the molecular details of the environment of azotyrosine in the enzyme.  相似文献   

19.
The high levels of selenium (selenate, selenite) in agricultural drainage water in the San Joaquin Valley of California, which have led to environmental problems, might be lowered if the selenate/selenite could be reduced to elemental insoluble selenium. Two organisms have been newly isolated which do this in anaerobic coculture. One, a strictly anaerobic, Gram-positive rod, reduces selenite to elemental selenium. The other, a Pseudomonas species, was shown to respire selenate to selenite. Cells grown anaerobically in Minimal Medium on acetate plus selenate oxidized 14C-acetate to 14CO2 with concomitant reduction of selenate to selenite and small amounts of elemental selenium.  相似文献   

20.
The activity and distribution of the selenium-containing enzyme, glutathione peroxidase, has been determined in muscle fractions in normal adult rats and sheep. Skeletal and cardiac muscle have been examined, and in both types of muscle the major proportion of the enzyme appeared in the cytosol fraction. Enzyme activity was higher in cardiac muscle than in skeletal muscle in both species, and based on total protein present in fractions, it appears that rat muscle contains more enzyme activity than sheep muscle. In tissues from lambs born to selenium-deprived ewes the levels of enzyme were significantly depressed. Two sampling periods were selected, the first when the lambs were 2-3 weeks of age and the second at slaughter when they were 10 weeks old. Muscle, plasma and erythrocyte levels of the enzyme indicated that the most sensitive measure of selenium deficiency is likely to be that of the erythrocyte enzyme level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号