首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Common domain databases contain sequence motifs which belong to the ubiquitin fold family and are called Ras binding (RB) and Ras association (RalGDS/AF6 Ras associating) (RA) domains. The name implies that they bind to Ras (or Ras-like) GTP-binding proteins, and a few of them have been documented to qualify as true Ras effectors, defined as binding only to the activated GTP-bound form of Ras. Here we have expressed a large number of these domains and investigated their interaction with Ras, Rap and M-Ras. While their (albeit weak) sequence homology suggest that the domains adopt a common fold, not all of them bind to Ras proteins, irrespective of whether they are called RB or RA domains. We used fluorescence spectroscopy and isothermal titration calorimetry to show that the binding affinities vary over a large range, and are usually specific for either Ras or Rap. Moreover, the specificity is dictated by a set of key residues in the interface. Stopped-flow kinetic analysis showed that the association rate constants determine the different affinities of effector binding, while the dissociation rate constants are in a similar range. Manual sequence analysis allowed us to define positively charged sequence epitopes in certain secondary structure elements of the ubiquitin fold (beta1, beta2 and alpha1) which are located at similar positions and comprise the hot spots of the binding interface. These residues are important to qualify an RA/RB domain as a true candidate Ras or Rap effector.  相似文献   

2.
Many cellular functions are based on the interaction and crosstalk of various signaling proteins. Among these, members of the Ras family of small GTP-binding proteins are important for communicating signals into different pathways. In order to answer the question of how binding affinity and specificity is achieved, we analyzed binding energetics on the molecular level, with reference to the available structural data. The interaction of two members of the Ras subfamily with two different effector proteins, namely Raf and RalGDS, were investigated using isothermal titration calorimetry and a fluorescence-based method. Experiments with alanine mutants, located in the complex interfaces, yielded an energy map for the contact areas of the Ras/effector complexes, which could be differentiated into enthalpy and entropy contributions. In addition, by using double mutant cycle analysis, we probed the energetic contribution of selected pairs of amino acid residues. The resulting energy landscapes of the Ras/effector interface areas show a highly different topology when comparing the two effectors, Raf and RalGDS, demonstrating the specificity of the respective interactions. Particularly, we observe a high degree of compensating effects between enthalpy and entropy; differences between these components are much greater than the overall free energy differences. This is observed also when using the software FOLD-X to predict the effect of point mutations on the crystal structures of the different complexes. Prediction of the free energy changes shows a very good correlation with the experimentally observed energies. Furthermore, in line with experimental data, energy decomposition indicates that many different components of large magnitude counteract each other to produce a smaller change in overall free energy, illustrating the importance of long-range electrostatic forces in complex formation.  相似文献   

3.
MOTIVATION: One of the more challenging problems in biology is to determine the cellular protein interaction network. Progress has been made to predict protein-protein interactions based on structural information, assuming that structural similar proteins interact in a similar way. In a previous publication, we have determined a genome-wide Ras-effector interaction network based on homology models, with a high accuracy of predicting binding and non-binding domains. However, for a prediction on a genome-wide scale, homology modelling is a time-consuming process. Therefore, we here successfully developed a faster method using position energy matrices, where based on different Ras-effector X-ray template structures, all amino acids in the effector binding domain are sequentially mutated to all other amino acid residues and the effect on binding energy is calculated. Those pre-calculated matrices can then be used to score for binding any Ras or effector sequences. RESULTS: Based on position energy matrices, the sequences of putative Ras-binding domains can be scanned quickly to calculate an energy sum value. By calibrating energy sum values using quantitative experimental binding data, thresholds can be defined and thus non-binding domains can be excluded quickly. Sequences which have energy sum values above this threshold are considered to be potential binding domains, and could be further analysed using homology modelling. This prediction method could be applied to other protein families sharing conserved interaction types, in order to determine in a fast way large scale cellular protein interaction networks. Thus, it could have an important impact on future in silico structural genomics approaches, in particular with regard to increasing structural proteomics efforts, aiming to determine all possible domain folds and interaction types. AVAILABILITY: All matrices are deposited in the ADAN database (http://adan-embl.ibmc.umh.es/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

4.
Tomić S  Bertosa B  Wang T  Wade RC 《Proteins》2007,67(2):435-447
The small guanosine triphosphate (GTP)-binding proteins of the Ras family are involved in many cellular pathways leading to cell growth, differentiation, and apoptosis. Understanding the interaction of Ras with other proteins is of importance not only for studying signalling mechanisms but also, because of their medical relevance as targets, for anticancer therapy. To study their selectivity and specificity, which are essential to their signal transfer function, we performed COMparative BINding Energy (COMBINE) analysis for 122 different wild-type and mutant complexes between the Ras proteins, Ras and Rap, and their effectors, Raf and RalGDS. The COMBINE models highlighted the amino acid residues responsible for subtle differences in binding of the same effector to the two different Ras proteins, as well as more significant differences in the binding of the two different effectors (RalGDS and Raf) to Ras. The study revealed that E37, D38, and D57 in Ras are nonspecific hot spots at its effector interface, important for stabilization of both the RalGDS-Ras and Raf-Ras complexes. The electrostatic interaction between a GTP analogue and the effector, either Raf or RalGDS, also stabilizes these complexes. The Raf-Ras complexes are specifically stabilized by S39, Y40, and D54, and RalGDS-Ras complexes by E31 and D33. Binding of a small molecule in the vicinity of one of these groups of amino acid residues could increase discrimination between the Raf-Ras and RalGDS-Ras complexes. Despite the different size of the RalGDS-Ras and Raf-Ras complexes, we succeeded in building COMBINE models for one type of complex that were also predictive for the other type of protein complex. Further, using system-specific models trained with only five complexes selected according to the results of principal component analysis, we were able to predict binding affinities for the other mutants of the particular Ras-effector complex. As the COMBINE analysis method is able to explicitly reveal the amino acid residues that have most influence on binding affinity, it is a valuable aid for protein design.  相似文献   

5.
WW domains are small globular protein interaction modules found in a wide spectrum of proteins. They recognize their target proteins by binding specifically to short linear peptide motifs that are often proline-rich. To infer the determinants of the ligand binding propensities of WW domains, we analyzed 42 WW domains. We built models of the 3D structures of the WW domains and their peptide complexes by comparative modeling supplemented with experimental data from peptide library screens. The models provide new insights into the orientation and position of the peptide in structures of WW domain-peptide complexes that have not yet been determined experimentally. From a protein interaction property similarity analysis (PIPSA) of the WW domain structures, we show that electrostatic potential is a distinguishing feature of WW domains and we propose a structure-based classification of WW domains that expands the existent ligand-based classification scheme. Application of the comparative molecular field analysis (CoMFA), GRID/GOLPE and comparative binding energy (COMBINE) analysis methods permitted the derivation of quantitative structure-activity relationships (QSARs) that aid in identifying the specificity-determining residues within WW domains and their ligand-recognition motifs. Using these QSARs, a new group-specific sequence feature of WW domains that target arginine-containing peptides was identified. Finally, the QSAR models were applied to the design of a peptide to bind with greater affinity than the known binding peptide sequences of the yRSP5-1 WW domain. The prediction was verified experimentally, providing validation of the QSAR models and demonstrating the possibility of rationally improving peptide affinity for WW domains. The QSAR models may also be applied to the prediction of the specificity of WW domains with uncharacterized ligand-binding properties.  相似文献   

6.
Here using structural information and protein design tools we have drawn the network of interactions between 20 Ras subfamily proteins with 50 putative Ras binding domains. To validate this network we have cloned six poorly characterized Ras binding domains (RBD) and two Ras proteins (RERG, DiRas1). These, together with previously described RBD domains, Ras and Rap proteins have been analyzed in 70 pull-down experiments. Comparing our interaction network with these and previous pull-down experiments (total of 150 cases) shows a very high accuracy for distinguishing between binders and non-binders ( approximately 0.80). Bioinformatics information was integrated to distinguish those in vitro interactions that are more likely to be relevant in vivo. We proposed several new interactions between Ras family members and effector domains that are of relevance in understanding the physiological role of these proteins. More broadly our results demonstrate that (domain-domain) interaction specificities between members of protein families can be accurately predicted using structural information.  相似文献   

7.
Interactions between Bcl-2-like proteins and BH3 domains play a key role in the regulation of apoptosis. Despite the overall structural similarity of their interaction with helical BH3 domains, Bcl-2-like proteins exhibit an intricate spectrum of binding specificities whose underlying basis is not well understood. Here, we characterize these interactions using Rosetta FlexPepBind, a protocol for the prediction of peptide binding specificity that evaluates the binding potential of different peptides based on structural models of the corresponding peptide-receptor complexes. For two prominent players, Bcl-xL and Mcl-1, we obtain good agreement with a large set of experimental SPOT array measurements and recapitulate the binding specificity of peptides derived by yeast display in a previous study. We extend our approach to a third member of this family, Bcl-2: we test our blind prediction of the binding of 180 BIM-derived peptides with a corresponding experimental SPOT array. Both prediction and experiment reveal a Bcl-2 binding specificity pattern that resembles that of Bcl-xL. Finally, we extend this application to accurately predict the specificity pattern of additional human BH3-only derived peptides. This study characterizes the distinct patterns of binding specificity of BH3-only derived peptides for the Bcl-2 like proteins Bcl-xL, Mcl-1, and Bcl-2 and provides insight into the structural basis of determinants of specificity.  相似文献   

8.
The Ral effector protein RLIP76 (also called RIP/RalBP1) binds to Ral.GTP via a region that shares no sequence homology with the Ras-binding domains of the Ser/Thr kinase c-Raf-1 and the Ral-specific guanine nucleotide exchange factors. Whereas the Ras-binding domains have a similar ubiquitin-like structure, the Ral-binding domain of RLIP was predicted to comprise a coiled-coil region. In order to obtain more information about the specificity and the structural mode of the interaction between Ral and RLIP, we have performed a sequence space and a mutational analysis. The sequence space analysis of a comprehensive nonredundant assembly of Ras-like proteins strongly indicated that positions 36 and 37 in the core of the effector region are tree-determinant positions for all subfamilies of Ras-like proteins and dictate the specificity of the interaction of these GTPases with their effector proteins. Indeed, we could convert the specific interaction with Ras effectors and RLIP by mutating these residues in Ras and Ral. We therefore conclude that positions 36 and 37 are critical for the discrimination between Ras and Ral effectors and that, despite the absence of sequence homology between the Ral-binding and the Ras-binding domains, their mode of interaction is most probably similar.  相似文献   

9.
Mammalian candidate effectors of the small GTPase Ras, such as RalGDS, afadin/AF-6, Rin1, and phospholipase Cepsilon, have been shown to share structurally conserved modules termed Ras-associating (RA) domains at their Ras-binding sites. The Ras-binding domains of Raf-1 and phosphoinositide 3-kinase gamma (other Ras effectors) also share a similar tertiary structure with the RA domains. On the other hand, the primary Ras-binding site of Saccharomyces cerevisiae adenylyl cyclase, the best characterized Ras effector, has been mapped by mutational studies to the leucine-rich repeats (LRR) domain (amino acids 674-1300), whose structure apparently bears no resemblance to the RA domains. By a computer algorithm-based search we have unexpectedly found an RA domain in the N-terminal 81 amino acid residues (676) of the LRR domain. The purified RA-domain polypeptide exhibits an ability to bind directly to Ras in a GTP-dependent manner and to competitively inhibit Ras-dependent activation of adenylyl cyclase in vitro, with an affinity comparable with that of the whole LRR domain. The specificity of binding of the RA domain to various Ras effector region mutants is indistinguishable from that of the full-length adenylyl cyclase. The activated RAS2 (RAS2(Val-19))-dependent heat shock sensitivity of yeast cells is suppressed by overexpression of the RA domain polypeptide. Further, mutations of the RA domain abolish its Ras binding activity, and adenylyl cyclase molecules carrying these mutations are rendered unactivatable by Ras in vitro. This RA domain bears highest similarity to the Ras-binding domain of Raf-1 based on comparison of its primary and predicted secondary structures with those of other Ras effectors. These results indicate that the RA domain is a primary Ras-binding site for activation of adenylyl cyclase, implicating RA domains as universal modules for interaction of effectors with Ras, conserved from yeast to mammals.  相似文献   

10.
It has previously been demonstrated that the simian virus 40 large T antigen and adenovirus E1A proteins can form complexes with the retinoblastoma susceptibility gene product (RB). We studied the ability of these proteins to bind to mutant RB proteins in vitro. A region of RB spanning residues 379 to 792 was found to be both necessary and sufficient for binding to T or E1A. Furthermore, this region of RB contains sufficient structural information to mimic wild-type RB in its ability to distinguish between wild-type T and the transformation-defective T mutant K1. The results of competition experiments with peptide analogs of the RB-binding sequence in T suggest that this region of RB makes direct contact with a short colinear region of T, i.e., residues 102 to 115, previously implicated in both transformation and RB binding.  相似文献   

11.
Most protein chains interact with only one ligand but a small number of protein chains can bind several ligands, and many examples are available in the protein-ligand complex database of PDB. Among these proteins, some show preferences for the ligands or types of ligands they bind; however, so far we have only poor understanding of what determines protein-ligand binding and its specificity. Here we investigate the structural and functional properties of proteins in protein-ligand complexes. Analysis of the protein-ligand complex dataset from the PDB structure database reveals that proteins with more interactions have more disordered contact residues. Those proteins containing few disordered contact residues that bind multiple ligands have a tendency to consist of several domains. Analysis of physicochemical properties of hub contact residues binding multiple ligands indicates that they are enriched for hydrophilic, charged, polar and His-Asp catalytic triad residues. Finally, in order to differentiate proteins binding different classes of ligands, we mapped the three most prominent classes of ligands onto different superfamily domains. Our results demonstrate that contact residue disorder and ordered multiple domains are complementary factors that play a crucial role in determining ligand binding specificity and promiscuity.  相似文献   

12.
Pleckstrin homology domains are structurally conserved functional domains that can undergo both protein/protein and protein/lipid interactions. Pleckstrin homology domains can mediate inter- and intra-molecular binding events to regulate enzyme activity. They occur in numerous proteins including many that interact with Ras superfamily members, such as p120 GAP. The pleckstrin homology domain of p120 GAP is located in the NH(2)-terminal, noncatalytic region of p120 GAP. Overexpression of the noncatalytic domains of p120 GAP may modulate Ras signal transduction pathways. Here, we demonstrate that expression of the isolated pleckstrin homology domain of p120 GAP specifically inhibits Ras-mediated signaling and transformation but not normal cellular growth. Furthermore, we show that the pleckstrin homology domain binds the catalytic domain of p120 GAP and interferes with the Ras/GAP interaction. Thus, we suggest that the pleckstrin homology domain of p120 GAP may specifically regulate the interaction of Ras with p120 GAP via competitive intra-molecular binding.  相似文献   

13.
An increasing number of cytosolic proteins are shown to interact with membrane lipids during diverse cellular processes, but computational prediction of these proteins and their membrane binding behaviors remains challenging. Here, we introduce a new combinatorial computation protocol for systematic and robust functional prediction of membrane-binding proteins through high throughput homology modeling and in-depth calculation of biophysical properties. The approach was applied to the genomic scale identification of the AP180 N-terminal homology (ANTH) domain, one of the modular lipid binding domains, and prediction of their membrane binding properties. Our analysis yielded comprehensive coverage of the ANTH domain family and allowed classification and functional annotation of proteins based on the differences in local structural and biophysical features. Our analysis also identified a group of plant ANTH domains with unique structural features that may confer novel functionalities. Experimental characterization of a representative member of this subfamily confirmed its unique membrane binding mechanism and unprecedented membrane deforming activity. Collectively, these studies suggest that our new computational approach can be applied to genome-wide functional prediction of other lipid binding domains.  相似文献   

14.
Drosophila enabled/vasodilator-stimulated phosphoprotein homology 1 (EVH1) domains are 115 residue protein-protein interaction modules which provide essential links for their host proteins to various signal transduction pathways. Many EVH1-containing proteins are associated closely with actin-based structures and are involved in re-organization of the actin cytoskeleton. EVH1 domains are also present in proteins enriched in neuronal tissue, thus implicating them as potential mediators of synaptic plasticity, linking them to memory formation and learning. Like Src homology 3, WW and GYF domains and profilin, EVH1 domains recognize and bind specific proline-rich sequences (PRSs). The binding is of low affinity, but tightly regulated by the high specificity encoded into residues in the protein:peptide interface. In general, a small (3-6 residue) 'core' PRS in the target protein binds a 'recognition pocket' on the domain surface. Further affinity- and specificity-increasing interactions are then formed between additional domain epitopes and peptide 'core-flanking' residues. The three-dimensional structures of EVH1:peptide complexes now reveal, in great detail, some of the most important features of these interactions and allow us to better understand the origins of specificity, ligand orientation and sequence degeneracy of target peptides, in low affinity signalling complexes.  相似文献   

15.
A yeast two-hybrid screening for Ras-binding proteins in nematode Caenorhabditis elegans has identified a guanine nucleotide exchange factor (GEF) containing a Ras/Rap1A-associating (RA) domain, termed Ce-RA-GEF. Both Ce-RA-GEF and its human counterpart Hs-RA-GEF possessed a PSD-95/DlgA/ZO-1 (PDZ) domain and a Ras exchanger motif (REM) domain in addition to the RA and GEF domains. They also contained a region homologous to a cyclic nucleotide monophosphate-binding domain, which turned out to be incapable of binding cAMP or cGMP. Although the REM and GEF domains are conserved with other GEFs acting on Ras family small GTP-binding proteins, the RA and PDZ domains are unseen in any of them. Hs-RA-GEF exhibited not only a GTP-dependent binding activity to Rap1A at its RA domain but also an activity to stimulate GDP/GTP exchange of Rap1A both in vitro and in vivo at the segment containing its REM and GEF domains. However, it did not exhibit any binding or GEF activity toward Ras. On the other hand, Ce-RA-GEF associated with and stimulated GDP/GTP exchange of both Ras and Rap1A. These results indicate that Ce-RA-GEF and Hs-RA-GEF define a novel class of Rap1A GEF molecules, which are conserved through evolution.  相似文献   

16.
Tordai H  Bányai L  Patthy L 《FEBS letters》1999,461(1-2):63-67
Based on homology search and structure prediction methods we show that (1) the N-terminal N domains of members of the plasminogen/hepatocyte growth factor family, (2) the apple domains of the plasma prekallikrein/coagulation factor XI family, and (3) domains of various nematode proteins belong to the same module superfamily, hereafter referred to as the PAN module. The patterns of conserved residues correspond to secondary structural elements of the known three-dimensional structure of hepatocyte growth factor N domain, therefore we predict a similar fold for all members of this superfamily. Based on available functional informations on apple domains and N domains, it is clear that PAN modules have significant functional versatility, they fulfill diverse biological functions by mediating protein-protein or protein-carbohydrate interactions.  相似文献   

17.
Here, we present an approach for the prediction of binding preferences of members of a large protein family for which structural information for a number of family members bound to a substrate is available. The approach involves a number of steps. First, an accurate multiple alignment of sequences of all members of a protein family is constructed on the basis of a multiple structural superposition of family members with known structure. Second, the methods of continuum electrostatics are used to characterize the energetic contribution of each residue in a protein to the binding of its substrate. Residues that make a significant contribution are mapped onto the protein sequence and are used to define a "binding site signature" for the complex being considered. Third, sequences whose structures have not been determined are checked to see if they have binding-site signatures similar to one of the known complexes. Predictions of binding affinity to a given substrate are based on similarities in binding-site signature. An important component of the approach is the introduction of a context-specific substitution matrix suitable for comparison of binding-site residues.The methods are applied to the prediction of phosphopeptide selectivity of SH2 domains. To this end, the energetic roles of all protein residues in 17 different complexes of SH2 domains with their cognate targets are analyzed. The total number of residues that make significant contributions to binding is found to vary from nine to 19 in different complexes. These energetically important residues are found to contribute to binding through a variety of mechanisms, involving both electrostatic and hydrophobic interactions. Binding-site signatures are found to involve residues in different positions in SH2 sequences, some of them as far as 9A away from a bound peptide. Surprisingly, similarities in the signatures of different domains do not correlate with whole-domain sequence identities unless the latter is greater than 50%.An extensive comparison with the optimal binding motifs determined by peptide library experiments, as well as other experimental data indicate that the similarity in binding preferences of different SH2 domains can be deduced on the basis of their binding-site signatures. The analysis provides a rationale for the empirically derived classification of SH2 domains described by Songyang & Cantley, in that proteins in the same group are found to have similar residues at positions important for binding. Confident predictions of binding preference can be made for about 85% of SH2 domain sequences found in SWISSPROT. The approach described in this work is quite general and can, in principle, be used to analyze binding preferences of members of large protein families for which structural information for a number of family members is available. It also offers a strategy for predicting cross-reactivity of compounds designed to bind to a particular target, for example in structure-based drug design.  相似文献   

18.
Many signaling and trafficking proteins contain modular domains that bind reversibly to cellular membranes. The structural basis of the intermolecular interactions which mediate these membrane-targeting events remains elusive since protein-membrane complexes are not directly accessible to standard structural biology techniques. Here we report a fast protein-micelle docking methodology that yields three-dimensional model structures of proteins inserted into micelles, revealing energetically favorable orientations, convergent insertion angles, and an array of protein-lipid interactions at atomic resolution. The method is applied to two peripheral membrane proteins, the early endosome antigen 1 (EEA1) FYVE (a zinc finger domain found in the proteins Fab1, YOTB/ZK632.12, Vac1, and EEA1) and Vam7p phagocyte oxidase homology domains, which are revealed to form extensive networks of interactions with multiple phospholipid headgroups and acyl chains. The resulting structural models explain extensive published mutagenesis data and reveal novel binding determinants. The docking restraints used here were based on NMR data, but can be derived from any technique that detects insertion of protein residues into a membrane, and can be applied to virtually any peripheral membrane protein or membrane-like structure.  相似文献   

19.
Src homology 2 (SH2) regions are short (approximately 100 amino acids), non-catalytic domains conserved among a wide variety of proteins involved in cytoplasmic signaling induced by growth factors. It is thought that SH2 domains play an important role in the intracellular response to growth factor stimulation by binding to phosphotyrosine containing proteins. In this paper we apply the techniques of multiple sequence alignment, secondary structure prediction and conservation analysis to 67 SH2 domain amino acid sequences. This combined approach predicts seven core secondary structure regions with the pattern beta-alpha-beta-beta-beta-beta-alpha, identifies those residues most likely to be buried in the hydrophobic core of the native SH2 domain, and highlights patterns of conservation indicative of secondary structural elements. Residues likely to be involved in phosphotyrosine binding are shown and orientations of the predicted secondary structures suggested which could enable such residues to cooperate in phosphate binding. We propose a consensus pattern that encapsulates the principal conserved features of the SH2 domains. Comparison of the proposed SH2 domain of akt to this pattern shows only 12/40 matches, suggesting that this domain may not exhibit SH2-like properties.  相似文献   

20.
HI1506 is a 128-residue hypothetical protein of unknown function from Haemophilus influenzae. It was originally annotated as a shorter 85-residue protein, but a more detailed sequence analysis conducted in our laboratory revealed that the full-length protein has an additional 43 residues on the C terminus, corresponding with a region initially ascribed to HI1507. As part of a larger effort to understand the functions of hypothetical proteins from Gram-negative bacteria, and H. influenzae in particular, we report here the three-dimensional solution NMR structure for the corrected full-length HI1506 protein. The structure consists of two well-defined domains, an alpha/beta 50-residue N-domain and a 3-alpha 32-residue C-domain, separated by an unstructured 30-residue linker. Both domains have positively charged surface patches and weak structural homology with folds that are associated with RNA binding, suggesting a possible functional role in binding distal nucleic acid sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号