首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The successive expression of neuronal transients is related to dynamic correlations and, as shown in this paper, to dynamic instability. Dynamic instability is a form of complexity, typical of neuronal systems, which may be crucial for adaptive brain function from two perspectives. The first is from the point of view of neuronal selection and self-organizing systems: if selective mechanisms underpin the emergence of adaptive neuronal responses then dynamic instability is, itself, necessarily adaptive. This is because dynamic instability is the source of diversity on which selection acts and is therefore subject to selective pressure. In short, the emergence of order, through selection, depends almost paradoxically on the instabilities that characterize the diversity of brain dynamics. The second perspective is provided by information theory.  相似文献   

2.
3.
4.
5.
This paper considers neuronal architectures from a computational perspective and asks what aspects of neuroanatomy and neurophysiology can be disclosed by the nature of neuronal computations? In particular, we extend current formulations of the brain as an organ of inference—based upon hierarchical predictive coding—and consider how these inferences are orchestrated. In other words, what would the brain require to dynamically coordinate and contextualize its message passing to optimize its computational goals? The answer that emerges rests on the delicate (modulatory) gain control of neuronal populations that select and coordinate (prediction error) signals that ascend cortical hierarchies. This is important because it speaks to a hierarchical anatomy of extrinsic (between region) connections that form two distinct classes, namely a class of driving (first-order) connections that are concerned with encoding the content of neuronal representations and a class of modulatory (second-order) connections that establish context—in the form of the salience or precision ascribed to content. We explore the implications of this distinction from a formal perspective (using simulations of feature–ground segregation) and consider the neurobiological substrates of the ensuing precision-engineered dynamics, with a special focus on the pulvinar and attention.  相似文献   

6.
Stress, acting through glucocorticoids (GC), has profound effects on brain physiology and pathology and is causally implicated in depressive illness. Here, we consider the information derived from genetic models generated to probe the role of the hypothalamo–pituitary–adrenal axis in depression. This essay also briefly reviews the status of knowledge regarding GC actions on neuronal birth, survival and death from the perspective of the importance of these phenomena in depression.  相似文献   

7.
The knowledge of the mechanisms regulating electric neuronal activity is fragmented by the wide variety of techniques and experimental models currently used in neurophysiological research. The interest and importance of the results obtained in any research is improved when interpreted in the perspective of the organism functioning as a whole in physiological conditions. Such interpretation, freed of the constraints imposed by the different techniques and experimental conditions used, is especially important when discussing together results obtained at the behavioral, cellular, and molecular level. This article outlines some of the key factors to consider when experiments from different models are interpreted together.  相似文献   

8.
We have shown that cultured mouse neural crest (NC) cells exhibit transient increases in intracellular calcium. Up to 50% of the cultured NC-derived cells exhibited calcium transients during the period of neuronal differentiation. As neurogenic activity declined, so did the percentage of active NC-derived cells and their calcium spiking frequency. The decrease in calcium transient activity correlated with a decreased sensitivity to thimerosal, which sensitizes inositol 1,4,5-triphosphate receptors. Thimerosal increased the frequency of oscillations in active NC-derived cells and induced them in a subpopulation of quiescent cells. As neurogenesis ended, NC-derived cells became nonresponsive to thimerosal. Using the expression of time-dependent neuronal traits, we determined that neurons exhibited spontaneous calcium transients as early as a neuronal phenotype could be detected and continued through the acquisition of caffeine sensitivity, soon after which calcium transient activity stopped. A subpopulation of nonneuronal NC-derived cells exhibited calcium transient activity within the same time frame as neurogenesis in culture. Exposing NC-derived cells to 20 mM Mg(2+) blocked calcium transient activity and reduced neuronal number without affecting the survival of differentiated neurons. Using lineage-tracing analysis, we found that 50% of active NC-derived cells gave rise to clones containing neurons, while inactive cells did not. We hypothesize that calcium transient activity establishes a neuronal competence for undifferentiated NC cells.  相似文献   

9.
10.
Mesolimbic dopaminergic neurons modulate complex circuitry in the ventral forebrain involved in reward processing, although the precise function of the dopaminergic input is debated. Electrophysiological measurements have revealed that mesolimbic dopaminergic neurons can fire in either tonic or phasic modes, and that phasic firing accompanies the alerting or anticipatory phases of reward. However, the neurochemical relevance of this rapid neuronal discharge within the reward processing circuitry is not yet clear, in part because of difficulty in interpretation of extracellular dopamine measurements. Herein, the nature of the information provided by different neurochemical techniques is critically discussed. Classical methods of monitoring dopamine reveal changes in extracellular dopamine resulting from tonic neuronal activity, but do not have the temporal resolution to distinguish concentration transients. However, recent advances in dopamine sensors now enable transient dopamine concentrations resulting from phasic firing to be positively identified and followed on a physiologically relevant timescale. This has enabled demonstrations of discrete, phasic dopamine signals accompanying rewarding or alerting stimuli. Thus, enhanced dopamine release at terminals appears to be coincident with phasic electrical activity at cell bodies. These accumulating data promise to help unravel the precise role of phasic dopamine transmission in reward processing.  相似文献   

11.
Subtypes of inhibitory GABAergic neurons containing Ca2+-binding proteins play a pivotal role in the regulation of spontaneous synchronous [Ca2+]i transients in a neuronal network. In this study it is shown that: (1) the interneurons that containing Ca2+-binding proteins at buffer concentration can be identified by the shape of Ca2+-signa1 in response to depolarization or activation of ionotropic glutamate receptors; (2) Ca2+-binding proteins are involved in desynchronization of spontaneous Ca2+ transients. At low frequencies of spontaneous synchronous [Ca2+]i transients (less than 0.2 Hz) neurons show quasi-synchronous pulsations. At higher frequencies, synchronization of spontaneous synchronous [Ca2+]i transients occurs in all neurons; (3) it is established that several synchronous oscillations with different frequencies coexist in the network and the amplitude of their depolarizing pulse also varies. This phenomenon is apparently the mechanism that selectively directs information in separate neurons using the same network; and (4) in one population of interneurons at high frequencies of spontaneous synchronous [Ca2+]i transients the inversion of Cl concentration gradient is observed. In this case, the inhibition of GABA(A) receptors suppresses the activity of neurons in this population and excites other neurons in the network. Thus, the GABAergic neurons that contain Ca-binding proteins show different mechanisms to regulate the synchronous neuronal activities in cultured rat hippocampal cells.  相似文献   

12.
The neural encoding of sensory stimuli is usually investigated for spike responses, although many neurons are known to convey information by graded membrane potential changes. We compare by model simulations how well different dynamical stimuli can be discriminated on the basis of spiking or graded responses. Although a continuously varying membrane potential contains more information than binary spike trains, we find situations where different stimuli can be better discriminated on the basis of spike responses than on the basis of graded responses. Spikes can be superior to graded membrane potential fluctuations if spikes sharpen the temporal structure of neuronal responses by amplifying fast transients of the membrane potential. Such fast membrane potential changes can be induced deterministically by the stimulus or can be due to membrane potential noise that is influenced in its statistical properties by the stimulus. The graded response mode is superior for discrimination between stimuli on a fine time scale.  相似文献   

13.
Voltage-dependent calcium influx has been shown to regulate the differentiation of cultured amphibian spinal neurons. We have examined the transient elevation of intracellular calcium induced by depolarization, using calcium indicators and confocal microscopy with high temporal and spatial resolution. Rapid calcium elevations in both the nucleus and the cytosol are primarily due to calcium-dependent release of calcium from intracellular stores. Depletion of stores associated with the endoplasmic reticulum reduces all transients. Elevations diminish with neuronal maturation. Depletion of stores of intracellular calcium at early times affects neuronal differentiation in a manner similar to the prevention of influx. The results indicate that both influx and release are necessary to promote neuronal differentiation.  相似文献   

14.
The gonadotropin-releasing hormone (GnRH) neurons are the key output cells of a complex neuronal network controlling fertility in mammals. To examine calcium homeostasis in postnatal GnRH neurons, we generated a transgenic mouse line in which the genetically encodable calcium indicator ratiometric Pericam (rPericam) was targeted to the GnRH neurons. This mouse model enabled real-time imaging of calcium concentrations in GnRH neurons in the acute brain slice preparation. Investigations in GnRH-rPericam mice revealed that GnRH neurons exhibited spontaneous, long-duration (~8s) calcium transients. Dual electrical-calcium recordings revealed that the calcium transients were correlated perfectly with burst firing in GnRH neurons and that calcium transients in GnRH neurons regulated two calcium-activated potassium channels that, in turn, determined burst firing dynamics in these cells. Curiously, the occurrence of calcium transients in GnRH neurons across puberty or through the estrous cycle did not correlate well with the assumption that GnRH neuron burst firing was contributory to changing patterns of pulsatile GnRH release at these times. The GnRH-rPericam mouse was also valuable in determining differential mechanisms of GABA and glutamate control of calcium levels in GnRH neurons as well as effects of G-protein-coupled receptors for GnRH and kisspeptin. The simultaneous measurement of calcium levels in multiple GnRH neurons was hampered by variable rPericam fluorescence in different GnRH neurons. Nevertheless, in the multiple recordings that were achieved no evidence was found for synchronous calcium transients. Together, these observations show the great utility of transgenic targeting strategies for investigating the roles of calcium with specified neuronal cell types.  相似文献   

15.
In order to identify and understand mechanistically the cortical circuitry of sensory information processing estimates are needed of synaptic input fields that drive neurons. From intracellular in vivo recordings one would like to estimate net synaptic conductance time courses for excitation and inhibition, g(E)(t) and g(I)(t), during time-varying stimulus presentations. However, the intrinsic conductance transients associated with neuronal spiking can confound such estimates, and thereby jeopardize functional interpretations. Here, using a conductance-based pyramidal neuron model we illustrate errors in estimates when the influence of spike-generating conductances are not reduced or avoided. A typical estimation procedure involves approximating the current-voltage relation at each time point during repeated stimuli. The repeated presentations are done in a few sets, each with a different steady bias current. From the trial-averaged smoothed membrane potential one estimates total membrane conductance and then dissects out estimates for g(E)(t) and g(I)(t). Simulations show that estimates obtained during phases without spikes are good but those obtained from phases with spiking should be viewed with skeptism. For the simulations, we consider two different synaptic input scenarios, each corresponding to computational network models of orientation tuning in visual cortex. One input scenario mimics a push-pull arrangement for g(E)(t) and g(I)(t) and idealized as specified smooth time courses. The other is taken directly from a large-scale network simulation of stochastically spiking neurons in a slab of cortex with recurrent excitation and inhibition. For both, we show that spike-generating conductances cause serious errors in the estimates of g(E) and g(I). In some phases for the push-pull examples even the polarity of g(I) is mis-estimated, indicating significant increase when g(I) is actually decreased. Our primary message is to be cautious about forming interpretations based on estimates developed during spiking phases.  相似文献   

16.
Voltage-gated calcium channels (VGCCs) serve as a critical link between electrical signaling and diverse cellular processes in neurons. We have exploited recent advances in genetically encoded calcium sensors and in culture techniques to investigate how the VGCC alpha1 subunit EGL-19 and alpha2/delta subunit UNC-36 affect the functional properties of C. elegans mechanosensory neurons. Using the protein-based optical indicator cameleon, we recorded calcium transients from cultured mechanosensory neurons in response to transient depolarization. We observed that in these cultured cells, calcium transients induced by extracellular potassium were significantly reduced by a reduction-of-function mutation in egl-19 and significantly reduced by L-type calcium channel inhibitors; thus, a main source of touch neuron calcium transients appeared to be influx of extracellular calcium through L-type channels. Transients did not depend directly on intracellular calcium stores, although a store-independent 2-APB and gadolinium-sensitive calcium flux was detected. The transients were also significantly reduced by mutations in unc-36, which encodes the main neuronal alpha2/delta subunit in C. elegans. Interestingly, while egl-19 mutations resulted in similar reductions in calcium influx at all stimulus strengths, unc-36 mutations preferentially affected responses to smaller depolarizations. These experiments suggest a central role for EGL-19 and UNC-36 in excitability and functional activity of the mechanosensory neurons.  相似文献   

17.
The properties of depolarization-evoked calcium transients are known to change during the maturation of dissociated cerebellar granule neuron cultures. Here, we assessed the role of the calcium-induced calcium release (CICR) mechanism in granule neuron maturation. Both depletion of intracellular calcium stores and the pharmacological blockade of CICR significantly reduced depolarization stimulated calcium transients in young but not older (>/=1 week) cultures. This functional decrease in the CICR signaling component was associated with the reduction of ryanodine receptor (RyR) immunoreactivity during granule neuron maturation both in culture and in the intact cerebellum. These observations are consistent with the idea that changes in RyR expression result in functional changes in calcium signaling transients during normal neuronal development in the intact mammalian cerebellum as well as in reduced neuronal cultures. Pharmacological disruption of CICR during neuron differentiation in vitro resulted in dose-dependent changes in survival, GAP-43 expression, and the acquisition of the glutamatergic neurotransmitter phenotype. Together, these results indicate that CICR function plays a physiologically relevant role in regulating early granule neuron differentiation in vitro and is likely to play a role in cerebellar maturation.  相似文献   

18.
We have examined the cellular and synaptic mechanisms underlying the genesis of alternating motor activity in the developing spinal cord of the chick embryo. Experiments were performed on the isolated lumbosacral cord maintained in vitro. Intracellular and whole cell patch clamp recordings obtained from sartorius (primarily a hip flexor) and femorotibialis (a knee extensor) motoneurons showed that both classes of cell are depolarized simultaneously during each cycle of motor activity. Sartorius motoneurons generally fire two bursts/cycle, whereas femorotibialis motoneurons discharge throughout their depolarization, with peak activity between the sartorius bursts. Voltage clamp recordings revealed that inhibitory and excitatory synaptic currents are responsible for the depolarization of sartorius motoneurons, whereas femorotibialis motoneurons are activated principally by excitatory currents. Early in development, the dominant synaptic currents in rhythmically active sartorius motoneurons appear to be inhibitory so that firing is restricted to a single, brief burst at the beginning of each cycle. In E7-E13 embryos, lumbosacral motor activity could be evoked following stimulation in the brainstem, even when the brachial and cervical cord was bathed in a reduced calcium solution to block chemical synaptic transmission. These findings suggest that functional descending connections from the brainstem to the lumbar cord are present by E7, although activation of ascending axons or electrical synapses cannot be eliminated. Ablation, optical, and immunocytochemical experiments were performed to characterize the interneuronal network responsible for the synaptic activation of motoneurons. Ablation experiments were used to show that the essential interneuronal elements required for the rhythmic alternation are in the ventral part of the cord. This observation was supported by real-time Fura-2 imaging of the neuronal calcium transients accompanying motor activity, which revealed that a high proportion of rhythmically active cells are located in the ventrolateral part of the cord and that activity could begin in this region. The fluorescence transients in the majority of neurons, including motoneurons, occurred in phase with ventral root or muscle nerve activity, implying synchronized neuronal action in the rhythm generating network. Immunocytochemical experiments were performed in E14-E16 embryos to localize putative inhibitory interneurons that might be involved in the genesis or patterning of motor activity. The results revealed a pattern similar to that seen in other vertebrates with the dorsal horn containing neurons with gamma-aminobutyric acid (GABA)-like immunoreactivity and the ventral and intermediate regions containing neurons with glycine-like immunoreactivity.  相似文献   

19.
20.
Prion diseases are caused by an infectious agent constituted by a rogue protein called prion (PrPSc) of neuronal origin (PrPc) and are exemplified by Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. Considerable efforts have been made to understand the cerebral damage caused by these diseases but a clear comprehensive view cannot be achieved without defining the neurophysiological function of PrPc. This lack of information is in part attributable to our ignorance of the precise localization of PrPc in the brain neuronal cell. One relevant option to explore this aspect is to undertake PrP immunohistochemistry at the electron-microscopy level, knowing that this challenge raises major technical constraints. In describing the attempts and restrictions of the various approaches used, we review here the efforts that have been invested in this particular field of prionology. The common result emerging from these contributions is that the synapse could be the site at which PrPc exerts its critical activity. This location suggests, in the perspective of synaptic regulation, that PrPc can be assigned multiple biological functions and supports the novel concept that prion-like changes are involved in long-term memory formation. The synaptic trait of PrPc and PrPSc suggests that synapse loss is the key event in neuronal death. Interestingly, synaptic alterations are also considered to be predominant in the pathophysiological mechanism in Alzheimer, Parkinson and Huntington diseases. All these brain disorders, characterized by the formation of a specific amyloid protein of synaptic origin, can be classified under the heading of amyloidogenic synaptopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号