首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Many genes in different organisms encode proteins with really interesting gene (RING) finger domain(s). The RING zinc finger domain is involved in a wide variety of functions in diverse organisms. A cDNA clone showing homology with RING zinc finger genes and nine-fold induction in response to cold was previously identified during a gene expression study in the interfertile Citrus relative Poncirus trifoliata (L.) Raf. In this study, the full-length cDNA of this clone was isolated from 2-day cold-acclimated P. trifoliata by a rapid amplification of cDNA ends method using gene-specific primers. The full-length cDNA was 956 bp containing a complete open reading frame of 474 bp encoding a polypeptide of 158 amino acids. The full-length cDNA showed a high level of homology with genes encoding putative RING zinc finger proteins in plants. The deduced amino acid sequence of this gene contained a signature sequence motif for a RING zinc finger close to the C terminus of the protein. The RING zinc finger domain was significantly similar to previously characterized RING zinc finger proteins from different organisms. Additionally, it had a histidine residue at the fifth co-ordination site, indicating that this gene encodes a RING-H2 finger protein. Northern blot hybridization showed that the expression of the RING finger gene was induced in response to cold in cold-hardy P. trifoliata but not to the same extent in cold-sensitive Citrus grandis L. Osb. (pummelo). However, the gene was induced by drought stress similarly in both the species. To our knowledge, this study presents the first isolation of the full-length sequence of a RING zinc finger gene induced in response to abiotic stress in plants and the initial characterization of this gene in Citrus .  相似文献   

3.
4.
5.
6.
Cassava (Manihot esculenta Crantz) is one of the world’s most important food crops. It is cultivated mainly in developing countries of tropics, since its root is a major source of calories for low-income people due to its high productivity and resistance to many abiotic and biotic factors. A previous study has identified a partial cDNA sequence coding for a putative RING zinc finger in cassava storage root. The RING zinc finger protein is a specialized type of zinc finger protein found in many organisms. Here, we isolated the full-length cDNA sequence coding for M. esculenta RZF (MeRZF) protein by a combination of 5′ and 3′ RACE assays. BLAST analysis showed that its deduced amino acid sequence has a high level of similarity to plant proteins of RZF family. MeRZF protein contains a signature sequence motif for a RING zinc finger at its C-terminal region. In addition, this protein showed a histidine residue at the fifth coordination site, likely belonging to the RING-H2 subgroup, as confirmed by our phylogenetic analysis. There is also a transmembrane domain in its N-terminal region. Finally, semi-quantitative RT-PCR assays showed that MeRZF expression is increased in detached leaves treated with sodium chloride. Here, we report the first evidence of a RING zinc finger gene of cassava showing potential role in response to salt stress.  相似文献   

7.
8.
The FILAMENTOUS FLOWER gene from Arabidopsis thaliana is a member of a gene family whose role is to specify abaxial cell fate in lateral organs. Analysis of the amino-terminal region of the FILAMENTOUS FLOWER protein suggests that seven cysteine residues at positions 14, 26, 30, 33, 54, 56, and 57, and two histidine residues at positions 18 and 24 contribute to a putative zinc finger motif, Cys-X(3)-His-X(5)-His-X-Cys-X(3)-Cys-X(2)-Cys-X(20)-Cys-X-Cys-Cys. Zinc determination experiments revealed that the FILAMENTOUS FLOWER protein binds two zinc ions per molecule. Chemical modification was required to release one zinc ion, whereas the other was released spontaneously or more rapidly in the presence of metallochromic indicator. The loss of a zinc ion and the subsequent structural change of the zinc finger domain were correlated with the multimerization of the FILAMENTOUS FLOWER protein. A cysteine residue at position 56 in the FILAMENTOUS FLOWER protein potentially interferes with zinc ligation within the zinc finger and causes this zinc release. In support of this, substitution of the Cys(56) by alanine suppressed both the zinc release and the multimerization of the FILAMENTOUS FLOWER protein. Deletion analysis showed that the region between positions 45 and 107 functions in the intermolecular contacts between FILAMENTOUS FLOWER proteins. This region corresponds to the carboxyl-terminal half of the zinc finger domain and the following hydrophobic region containing two putative alpha-helices. Our results suggest that the FILAMENTOUS FLOWER protein forms a range of different conformers. This attribute may lead to a greater degree of functional flexibility that is central to its role as an abaxial cell fate regulator.  相似文献   

9.
We have previously identified an estrogen-responsive gene, efp (estrogen-responsive finger protein), by genomic binding-site cloning method. Here, we isolated a rat homologue of efp cDNA that encodes an open reading frame of 644 amino acids sharing high homology with human efp (69% identity at the protein level) and mouse efp (80% identity at the protein level). The efp protein has a RING finger, a variant type of zinc finger motif, B1 box and B2 box, each having a pair of zinc fingers, and coiled-coil domain, belonging to the RING finger-B box-Coiled Coil (RBCC) family. Several members of RBCC family including efp have characteristic C-terminal domain, forming a subfamily. Next, we detected efp mRNA in primary osteoblasts, one of estrogen target cells, derived from the calvariae of rat fetus. An anti-efp antibody revealed the efp protein is expressed and regulated by estrogen in the primary osteoblasts. Interestingly, the efp protein in primary osteoblasts is down-regulated by 1alpha,25-dihydroxyvitamin D(3) treatment that promotes the differentiation of the cells, whereas it is up-regulated by TGF-beta1 treatment that inhibits the differentiation of the cells. These findings suggest the possible involvement of the efp in the differentiation of osteoblastic cells.  相似文献   

10.
11.
RING finger proteins are zinc finger proteins containing the RING motifs. They act mainly as E3 ubiq-uitin ligases, bind the ubiquitin E2 conjugating enzyme and promote degradation of targeted proteins, Many novel genes have been isolated and differentially expressed in human adult and embryo testis by a testis cDNA-array differential display technique. A novel RING finger cDNA is highly expressed in adult testis and at low level in fetal testis. It was named Spg2. It contains a 2055 nucleotide ORF, en-codes a 685-amino-acid RNF6 protein, and has a RING finger in its C terminal. NCBI Blast shows that the gene is located on chromosome 13 and contains five exons. A multiple tissue expression profile also indicates that it is highly expressed in human testis, so we speculate that it may be associated with human spermatogenesis by virtue of the action of its RING domain.  相似文献   

12.
The RING domain is a conserved zinc finger motif, which serves as a protein-protein interaction interface. Searches of a human heart expressed sequence tag data base for genes encoding the RING domain identified a novel cDNA, named striated muscle RING zinc finger protein (SMRZ). The SMRZ cDNA is 1.9 kilobase pairs in length and encodes a polypeptide of 288 amino acid residues; analysis of the peptide sequence demonstrated an N-terminal RING domain. Fluorescence in situ hybridization localized SMRZ to chromosome 1p33-34. Northern blots demonstrated that SMRZ is expressed exclusively in striated muscle. In the cardiovascular system, SMRZ is more highly expressed in the fetal heart than in the adult heart (slightly higher expression in the ventricle than in the atrium), suggesting that SMRZ is developmentally regulated. SMRZ was found to interact with SMT3b, a ubiquitin-like protein, through the SMRZ-RING domain. This interaction was abolished by mutagenesis of conserved RING domain residues. Transient transfection of SMRZ into C2C12 myoblasts showed localization of SMRZ to the nucleus. These data suggest that SMRZ may play an important role in striated muscle cell embryonic development and perhaps in cell cycle regulation.  相似文献   

13.
《Plant science》2007,173(6):650-659
RING zinc finger proteins are known for their role predominantly in targeted protein degradation and participate in gene regulation through interaction with other regulatory proteins. In this study seven RING zinc finger genes from Triticum aestivum (bread wheat) were analysed for expression profiles in various organs (leaf, root, stem, spike, endosperm and embryo) and during leaf development and aging as well as in their responses to water deficit. Expression levels of six of these seven genes varied markedly among the six organs examined. All seven genes changed their expression levels in the leaf from the growing to senescing stage. Four genes were responsive to water deficit. A RING-H2 zinc finger gene, TaRZF70 showed differential response to water deprivation, namely up-regulation in the leaf and down-regulation in the root. This differential response was also observed in abscisic acid (ABA)-treated plants. Sequence analysis revealed that TaRZF70 contained four RING-H2 domains, the largest number of RING-H2 domains in any RING-H2 zinc finger proteins reported to date. These results indicate that these RING zinc finger genes are involved in diverse physiological processes in wheat, including response to drought.  相似文献   

14.
We have identified a novel RING-B-box-coiled-coil (RBCC) protein (MAIR for macrophage-derived apoptosis-inducing RBCC protein) that consists of an N-terminal RING finger, followed by a B-box zinc finger, a coiled-coil domain, and a B30.2 domain. MAIR mRNA was expressed widely in mouse tissues and was induced by macrophage colony-stimulating factor in murine peritoneal and bone marrow macrophages. MAIR protein initially showed a granular distribution predominantly in the cytoplasm. The addition of zinc to transfectants containing MAIR cDNA as part of a heavy metal-inducible vector caused apoptosis of the cells characterized by cell fragmentation; a reduction in mitochondrial membrane potential; activation of caspase-7, -8, and -9, but not caspase-3; and DNA degradation. We also found that the RING finger and coiled-coil domains were required for MAIR activity by analysis with deletion mutants.  相似文献   

15.
The genome of Bombyx mori nucleopolyhedrovirus (BmNPV) is predicted to contain six RING finger proteins: IAP1, ORF35, IAP2, CG30, IE2, and PE38. Several other members of the RING finger family have recently been shown to have the ubiquitin-ligase (E3) activity. We thus examined whether BmNPV RING finger proteins have the E3 activity. In vitro ubiquitination assay with the rabbit reticulocyte lysates and BmNPV RING finger proteins fused with maltose-binding protein (MBP) showed that four of them (IAP2, IE2, PE38, and CG30) were polyubiquitinated in the presence of zinc ion. Furthermore, MBP-IAP2, MBP-IE2, and MBP-PE38 were able to reconstitute ubiquitination activity in cooperation with the Ubc4/5 subfamily of ubiquitin-conjugating enzymes. Mutational analysis also showed that ubiquitination activity of MBP-IAP2, MBP-IE2, and MBP-PE38 were dependent on their RING finger motif. Therefore, these results suggest that IAP2, IE2, and PE38 may function as E3 enzymes during BmNPV infection.  相似文献   

16.
锌指蛋白在调节植物防卫基因表达和抗性反应上起关键作用。目前,对大豆中C3HC4型RING锌指蛋白基因的研究不多。本研究利用核蛋白筛选系统(NTT)筛选大豆(铁丰8号)干旱处理5h的cDNA文库,获得一个RING锌指蛋白基因。该基因全长927bp,编码308个氨基酸,含有C3HC4-type RING锌指结构域,命名为GmRZFP1。系统进化树分析显示,Gm-RZFP1属于C3HC4-type锌指亚家族。Real-time PCR结果表明,GmRZFP1基因受干旱、高盐、高温、低温、乙烯和ABA等胁迫诱导表达,表明该蛋白涉及多种胁迫相关的信号传导途径。亚细胞定位结果表明,163hGFP-GmRZFP1融合蛋白定位于细胞核中。本研究结果有助于研究该类基因在大豆逆境应答反应中的作用,阐明大豆抗逆分子机制。  相似文献   

17.
EL5, a RING-H2 finger protein, is rapidly induced by N-acetylchitooligosaccharides in rice cell. We expressed the EL5 RING-H2 finger domain in Escherichia coli and determined its structure in solution by NMR spectroscopy. The EL5 RING-H2 finger domain consists of two-stranded beta-sheets (beta1, Ala(147)-Phe(149); beta2, Gly(156)-His(158)), one alpha-helix (Cys(161)-Leu(166)), and two large N- and C-terminal loops. It is stabilized by two tetrahedrally coordinated zinc ions. This structure is similar to that of other RING finger domains of proteins of known function. From structural analogies, we inferred that the EL5 RING-H2 finger is a binding domain for ubiquitin-conjugating enzyme (E2). The binding site is probably formed by solvent-exposed hydrophobic residues of the N- and C-terminal loops and the alpha-helix. We demonstrated that the fusion protein with EL5-(96-181) and maltose-binding protein (MBP) was polyubiquitinated by incubation with ubiquitin, ubiquitin-activating enzyme (E1), and a rice E2 protein, OsUBC5b. This supported the idea that the EL5 RING finger domain is essential for ubiquitin-ligase activity of EL5. By NMR titration experiments, we identified residues that are critical for the interaction between the EL5 RING-H2 finger and OsUBC5b. We conclude that the RING-H2 finger domain of EL5 is the E2 binding site of EL5.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号