首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There exists a large body of research on the lens of the mammalian eye over the past several decades. The objective of this work is to provide a link between the most recent computational models and some of the pioneering work in the 1970s and 80s. We introduce a general nonelectroneutral model to study the microcirculation in the lens of the eye. It describes the steady-state relationships among ion fluxes, between water flow and electric field inside cells, and in the narrow extracellular spaces between cells in the lens. Using asymptotic analysis, we derive a simplified model based on physiological data and compare our results with those in the literature. We show that our simplified model can be reduced further to the first-generation models, whereas our full model is consistent with the most recent computational models. In addition, our simplified model captures in its equations the main features of the full computational models. Our results serve as a useful link intermediate between the computational models and the first-generation analytical models. Simplified models of this sort may be particularly helpful as the roles of similar osmotic pumps of microcirculation are examined in other tissues with narrow extracellular spaces, such as cardiac and skeletal muscle, liver, kidney, epithelia in general, and the narrow extracellular spaces of the central nervous system, the “brain.” Simplified models may reveal the general functional plan of these systems before full computational models become feasible and specific.  相似文献   

2.
MOTIVATION: Experimental techniques alone cannot keep up with the production rate of protein sequences, while computational techniques for protein structure predictions have matured to such a level to provide reliable structural characterization of proteins at large scale. Integration of multiple computational tools for protein structure prediction can complement experimental techniques. RESULTS: We present an automated pipeline for protein structure prediction. The centerpiece of the pipeline is our threading-based protein structure prediction system PROSPECT. The pipeline consists of a dozen tools for identification of protein domains and signal peptide, protein triage to determine the protein type (membrane or globular), protein fold recognition, generation of atomic structural models, prediction result validation, etc. Different processing and prediction branches are determined automatically by a prediction pipeline manager based on identified characteristics of the protein. The pipeline has been implemented to run in a heterogeneous computational environment as a client/server system with a web interface. Genome-scale applications on Caenorhabditis elegans, Pyrococcus furiosus and three cyanobacterial genomes are presented. AVAILABILITY: The pipeline is available at http://compbio.ornl.gov/proteinpipeline/  相似文献   

3.
Computational models in physiology often integrate functional and structural information from a large range of spatiotemporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and skepticism concerning how computational methods can improve our understanding of living organisms and also how they can reduce, replace, and refine animal experiments. A fundamental requirement to fulfill these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present study aims at informing strategies for validation by elucidating the complex interrelations among experiments, models, and simulations in cardiac electrophysiology. We describe the processes, data, and knowledge involved in the construction of whole ventricular multiscale models of cardiac electrophysiology. Our analysis reveals that models, simulations, and experiments are intertwined, in an assemblage that is a system itself, namely the model-simulation-experiment (MSE) system. We argue that validation is part of the whole MSE system and is contingent upon 1) understanding and coping with sources of biovariability; 2) testing and developing robust techniques and tools as a prerequisite to conducting physiological investigations; 3) defining and adopting standards to facilitate the interoperability of experiments, models, and simulations; 4) and understanding physiological validation as an iterative process that contributes to defining the specific aspects of cardiac electrophysiology the MSE system targets, rather than being only an external test, and that this is driven by advances in experimental and computational methods and the combination of both.  相似文献   

4.
《Biophysical journal》2020,118(6):1455-1465
Physical models of biological systems can become difficult to interpret when they have a large number of parameters. But the models themselves actually depend on (i.e., are sensitive to) only a subset of those parameters. This phenomenon is due to parameter space compression (PSC), in which a subset of parameters emerges as “stiff” as a function of time or space. PSC has only been used to explain analytically solvable physics models. We have generalized this result by developing a numerical approach to PSC that can be applied to any computational model. We validated our method against analytically solvable models of a random walk with drift and protein production and degradation. We then applied our method to a simple computational model of microtubule dynamic instability. We propose that numerical PSC has the potential to identify the low-dimensional structure of many computational models in biophysics. The low-dimensional structure of a model is easier to interpret and identifies the mechanisms and experiments that best characterize the system.  相似文献   

5.
This paper describes the underlying strategy and system's design of a knowledge management system for the neuroscientific literature called 'NeuroScholar'. The problem that the system is designed to address is to delineate fully the neural circuitry involved in a specific behaviour. The use of this system provides experimental neuroscientists with a new method of building computational models ('knowledge models') of the contents of the published literature. These models may provide input for analysis (conceptual or computational), or be used as constraint sets for conventional neural modelling work. The underlying problems inherent in this approach, the general framework for the proposed solution, the practical issues concerning usage of the system and a detailed, technical account of the system are described. The author uses a widely used software specification language (the Universal Modelling Language) to describe the design of the system and present examples from published work concerned with classical eyeblink conditioning in the rabbit.  相似文献   

6.
Multiscale computational modeling of drug delivery systems (DDS) is poised to provide predictive capabilities for the rational design of targeted drug delivery systems, including multi-functional nanoparticles. Realistic, mechanistic models can provide a framework for understanding the fundamental physico-chemical interactions between drug, delivery system, and patient. Multiscale computational modeling, however, is in its infancy even for conventional drug delivery. The wide range of emerging nanotechnology systems for targeted delivery further increases the need for reliable in silico predictions. This review will present existing computational approaches at different scales in the design of traditional oral drug delivery systems. Subsequently, a multiscale framework for integrating continuum, stochastic, and computational chemistry models will be proposed and a case study will be presented for conventional DDS. The extension of this framework to emerging nanotechnology delivery systems will be discussed along with future directions. While oral delivery is the focus of the review, the outlined computational approaches can be applied to other drug delivery systems as well.  相似文献   

7.
A paradigm model system for studying the development of patterned connections in the nervous system is the topographic map formed by retinal axons in the optic tectum/superior colliculus. Starting in the 1970s, a series of computational models have been proposed to explain map development in both normal conditions, and perturbed conditions where the retina and/or tectum/superior colliculus are altered. This stands in contrast to more recent models that have often been simpler than older ones, and tend to address more limited data sets, but include more recent genetic manipulations. The original exploration of many of the early models was one-dimensional and limited by the computational resources of the time. This leaves open the ability of these early models to explain both map development in two dimensions, and the genetic manipulation data that have only appeared more recently. In this article, we show that a two-dimensional and updated version of the XBAM model (eXtended Branch Arrow Model), first proposed in 1982, reproduces a range of surgical map manipulations not yet demonstrated by more modern models. A systematic exploration of the parameter space of this model in two dimensions also reveals richer behavior than that apparent from the original one-dimensional versions. Furthermore, we show that including a specific type of axon?Caxon interaction can account for the map collapse recently observed when particular receptor levels are genetically manipulated in a subset of retinal ganglion cells. Together these results demonstrate that balancing multiple influences on map development seems to be necessary to explain many biological phenomena in retinotectal map formation, and suggest important constraints on the underlying biological variables.  相似文献   

8.
Different computational models were used and screened to find a rational way in selecting the appropriate functional silane monomer for the best molecular imprinted xerogel (MIX) formulation. Several functional silane monomers were used and allowed to react with a template model, tetracycline (TC). The resulting template-monomer complex molecules were first optimized and their interaction energies (IEs) were calculated using different computational methods such as semi-empirical methods, ab-initio methods, density functional theory (DFT) methods and solvent model method. The formulations used for calculation were also prepared and their performance in binding with TC was determined using tritium labeled sample. Results showed that the rankings of the different formulations varied with the different computational methods. However, rankings of the IEs of the xerogels are similar to that of the imprinting factor (IF) when HF and B3LYP at SV(P) and SVP basis set levels were used. The best imprinted xerogel, allyltriethoxysilane (AtEOS) ranked first in ten out of the 26 computational models that were screened and at all computational methods at tetramer system.  相似文献   

9.
The IUPS Physiome Project is an internationally collaborative open-source project to provide a public domain framework for computational physiology, including the development of modelling standards, computational tools and web-accessible databases of models of structure and function at all spatial scales. A number of papers in this volume deal with the development of specific mathematical models of physiological processes. This paper stands back from the detail of individual models and reviews the current state of the IUPS Physiome Project including organ and organ system continuum models, the interpretation of constitutive law parameters in terms of micro-structural models, and markup languages for standardizing cellular processes. Some current practical applications of the physiome models are given and some of the challenges for the next 5 years of the Physiome Project at the level of organs, cells and proteins are proposed.  相似文献   

10.
Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred.  相似文献   

11.

Background  

Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models.  相似文献   

12.
Computational models are increasingly essential to systems neuroscience. Models serve as proofs of concept, tests of sufficiency, and as quantitative embodiments of working hypotheses and are important tools for understanding and interpreting complex data sets. In the olfactory system, models have played a particularly prominent role in framing contemporary theories and presenting novel hypotheses, a role that will only grow as the complexity and intricacy of experimental data continue to increase. This review will attempt to provide a comprehensive, functional overview of computational ideas in olfaction and outline a computational framework for olfactory processing based on the insights provided by these diverse models and their supporting data.  相似文献   

13.
14.
With our growing awareness of the complexity underlying biological phenomena, our need for computational models becomes increasingly apparent. Due to their properties, biological clocks have always lent themselves to computational modelling. Their capacity to oscillate without dampening - even when deprived of all rhythmic environmental information - required the hypothesis of an endogenous oscillator. The notion of a 'clock' provided a conceptual model of this system well before the dynamics of circadian oscillators were probed by computational modelling. With growing insight into the molecular basis of circadian rhythmicity, computational models became more concrete and quantitative. Here, we review the history of modelling circadian oscillators and establish a taxonomy of the modelling world to put the large body of circadian modelling literature into context. Finally, we assess the predictive power of circadian modelling and its success in creating new hypotheses.  相似文献   

15.
A computational model is presented for the detection of coherent motion based on template matching and hidden Markov models. The premise of this approach is that the growth in detection sensitivity is greater for coherent motion of structured forms than for random coherent motion. In this preliminary study, a recent experiment was simulated with the model and the results are shown to be in agreement with the above premise. This model can be extended to be part of a more complex and elaborate computational visual system.  相似文献   

16.
Chen PC 《Bio Systems》2005,81(2):155-163
This article presents an approach for synthesizing target strings in a class of computational models of DNA recombination. The computational models are formalized as splicing systems in the context of formal languages. Given a splicing system (of a restricted type) and a target string to be synthesized, we construct (i) a rule-embedded splicing automaton that recognizes languages containing strings embedded with symbols representing splicing rules, and (ii) an automaton that implicitly recognizes the target string. By manipulating these two automata, we extract all rule sequences that lead to the production of the target string (if that string belongs to the splicing language). An algorithm for synthesizing a certain type of target strings based on such rule sequences is presented.  相似文献   

17.
The goal of the Caltech group is to gain insight into the processes that occur within the primate nervous system during dexterous reaching and grasping and to see whether natural recovery from local brain damage can be accelerated by artificial means. We will create computational models of the nervous system embodying this insight and explain a variety of clinically observed neurological deficits in human subjects using these models.  相似文献   

18.
Prediction of promiscuous peptides that bind HLA class I molecules   总被引:9,自引:0,他引:9  
Promiscuous T-cell epitopes make ideal targets for vaccine development. We report here a computational system, MULTIPRED, for the prediction of peptide binding to the HLA-A2 supertype. It combines a novel representation of peptide/MHC interactions with a hidden Markov model as the prediction algorithm. MULTIPREDis both sensitive and specific, and demonstrates high accuracy of peptide-binding predictions for HLA-A*0201, *0204, and *0205 alleles, good accuracy for *0206 allele, and marginal accuracy for *0203 allele. MULTIPREDreplaces earlier requirements for individual prediction models for each HLA allelic variant and simplifies computational aspects of peptide-binding prediction. Preliminary testing indicates that MULTIPRED can predict peptide binding to HLA-A2 supertype molecules with high accuracy, including those allelic variants for which no experimental binding data are currently available.  相似文献   

19.
The spatial dimensionality of the vocal fold vibration is a common challenge in creating parsimonious models of vocal fold vibration. The ideal model is one that is accurate, with the lowest possible computational expense. Inclusion of full 3D flow and structural vibration typically requires massive amounts of computation, whereas reduction of either the flow or the structure to two dimensions eliminates certain aspects of physical reality, thus making the resulting models less accurate. Previous 2D models of the vocal fold structure have utilized a plane strain formulation, which is shown to be an erroneous modeling approach since it ignores influential stress components. We herein present a 2D/3D hybrid vocal fold model that preserves three-dimensional effects of length and longitudinal shear stresses, while taking advantage of a two-dimensional computational domain. The resulting model exhibits static and dynamic responses comparable to a 3D model, and retains the computational advantage of a two-dimensional model.  相似文献   

20.
Goodhill GJ 《Neuron》2007,56(2):301-311
Theoretical/computational models have played an important role in developing our understanding of the fundamental mechanisms involved in neural map formation. I review models based on both chemospecific and activity-dependent matching of inputs to targets, with a particular focus on map development in the optic tectum and primary visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号