首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of the study were to evaluate the effect of high shear mixer (HSM) granulation process parameters and scale-up on wet mass consistency and granulation characteristics. A mixer torque rheometer (MTR) was employed to evaluate the granulating solvents used (water, isopropanol, and 1:1 vol/vol mixture of both) based on the wet mass consistency. Gral 25 and mini-HSM were used for the granulation. The MTR study showed that the water significantly enhanced the beta-cyclodextrin (βCD) binding tendency and the strength of liquid bridges formed between the particles, whereas the isopropanol/water mixture yielded more suitable agglomerates. Mini-HSM granulation with the isopropanol/water mixture (1:1 vol/vol) showed a reduction in the extent of torque value rise by increasing the impeller speed as a result of more breakdown of agglomerates than coalescence. In contrast, increasing the impeller speed of the Gral 25 resulted in higher torque readings, larger granule size, and consequently, slower dissolution. This was due to a remarkable rise in temperature during Gral granulation that reduced the isopropanol/water ratio in the granulating solvent as a result of evaporation and consequently increased the βCD binding strength. In general, the HSM granulation retarded ibuprofen dissolution compared with the physical mixture because of densification and agglomeration. However, a successful HSM granulation scale-up was not achieved due to the difference in the solvent mixture’s effect from 1 scale to the other.  相似文献   

2.
Guo Z  Ma M  Wang T  Chang D  Jiang T  Wang S 《AAPS PharmSciTech》2011,12(2):610-619
The objective of the present study was to investigate the mechanism, kinetics, and factors affecting the polymorphic transformation of nimodipine (NMD) and indomethacin (IMC) during high shear granulation. Granules containing active pharmaceutical ingredient, microcrystalline cellulose, and low-substituted hydroxypropylcellulose were prepared with ethanolic hydroxypropylcellulose solution, and the effects of independent process variables including impeller speed and granulating temperature were taken into consideration. Two polymorphs of the model drugs and granules were characterized by X-ray powder diffraction analysis and quantitatively determined by differential scanning calorimetry. A theoretical kinetic method of ten kinetic models was applied to analyze the polymorphic transformation of model drugs. The results obtained revealed that both the transformation of modification I to modification II of NMD and the transformation of the α form to the γ form of IMC followed a two-dimensional nuclei growth mechanism. The activation energy of transformation was calculated to be 7.933 and 56.09 kJ·mol−1 from Arrhenius plot, respectively. Both the granulating temperature and the impeller speed affected the transformation rate of the drugs and, in particular, the high shear stress significantly accelerated the transformation process. By analyzing the growth mechanisms of granules in high-shear mixer, it was concluded that the polymorphic transformation of NMD and IMC took place in accordance with granule growth in a high-shear mixer.  相似文献   

3.
The objective of the present study was to develop once-daily sustained-release matrix tablets of nicorandil, a novel potassium channel opener used in cardiovascular diseases. The tablets were prepared by the wet granulation method. Ethanolic solutions of ethylcellulose (EC), Eudragit RL-100, Eudragit RS-100, and polyvinylpyrrolidone were used as granulating agents along with hydrophilic matrix materials like hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose, and sodium alginate. The granules were evaluated for angle of repose, bulk density, compressibility index, total porosity, and drug content. The tablets were subjected to thickness, diameter, weight variation test, drug content, hardness, friability, and in vitro release studies. The granules showed satisfactory flow properties, compressibility, and drug content. All the tablet formulations showed acceptable pharmacotechnical properties and complied with in-house specifications for tested parameters. According to the theoretical release profile calculation, a oncedaily sustained-release formulation should release 5.92 mg of nicorandil in 1 hour, like conventional tablets, and 3.21 mg per hour up to 24 hours. The results of dissolution studies indicated that formulation F-I (drug-to-HPMC, 1∶4; ethanol as granulating agent) could extend the drug release up to 24 hours. In the further formulation development process, F-IX (drug-to-HPMC, 1∶4; EC 4% wt/vol as granulating agent), the most successful formulation of the study, exhibited satisfactory drug release in the initial hours, and the total release pattern was very close to the theoretical release profile. All the formulations (except F-IX) exhibited diffusion-dominated drug release. The mechanism of drug release from F-IX was diffusion coupled with erosion.  相似文献   

4.
The effect of anhydrous lactose particle size distribution on its performance in the wet granulation process was evaluated. Three grades of anhydrous lactose were used in the study: “as is” manufacturer grade and 2 particle size fractions obtained by screening of the 60M lactose. Particle growth behavior of the 3 lactose grades was evaluated in a high shear mixer. Compactibility and porosity of the resulting granules were also evaluated. A uniaxial compression test on moist agglomerates of the 3 lactose grades was performed in an attempt to explain the mechanism of particle size effect observed in the high shear mixer. Particle growth of anhydrous lactose in the high shear mixer was inversely related to the particle size of the starting material. In addition, granulation manufactured using the grade with the smallest particle size was more porous and demonstrated enhanced compactibility compared with the other grades. Compacts with similar porosity and low liquid saturation demonstrated brittle behavior and their breakage strength was inversely related to lactose particle size in the uniaxial compression test, suggesting that material with smaller particle size may exhibit more pronounced nucleation behavior during wet granulation. On the other hand, compacts prepared at higher liquid saturation and similar compression force exhibited more plastic behavior and showed lower yield stress for the grade with smallest particle size. The lower yield stress of compacts prepared with this grade may indicate a higher coalescence tendency for its granules during wet granulation.  相似文献   

5.
The purpose of this research was to investigate the effects of particle size on the wet massing behavior of microcrystalline cellulose (MCC). In this study, a series of six fractionated MCC grades were customized and specially classified to yield different particle size varieties of the standard grade, Comprecel M101. All seven MCC grades were extensively characterized for the physical properties and wet massing behavior using mixer torque rheometry. Effects of MCC physical properties on the maximum torque (Torquemax) were determined using partial least squares (PLS) analysis. Most physical properties varied systematically with particle size and morphological changes. Marked differences were observed in the small pore volumes (V highP) and BET surface areas of the MCC grades. Variables that exerted dominant influences on Torquemax were identified. In particular, the significance of V highP in governing wet mass consistency was established. The role of V highP has not been reported in any study because this small but significant variation is likely to be obliterated or compensated by variation in other physical properties from MCC grades from different suppliers. The findings demonstrated the role of small pores in governing the wet mass consistency of MCC and provide a better understanding of MCC’s superior performance as a spheronization aid by the ability to fulfill the function as a molecular sponge to facilitate pellet formation during wet granulation processes.  相似文献   

6.
A low cost gas mixer for permanent gases and volatile agents is described. The apparatus uses the simple principle that if known volumes of gases are mixed at the same pressure and temperature, then a mixture of known composition results. The apparatus is shown to have an accuracy of better than ± 0.08% vol/vol for gases and volatile agents in two and three part mixtures. For permanent gases the mixer could be used accurately over the concentration range 1–99% vol/vol. For volatile agents the mixer was suitable for mixing concentrations in the low percentage ranges (< 5% vol/vol). Gas mixtures, including volatile agents, could be stored in the mixer for approximately 2 h without changes in concentration outside this limit of accuracy.  相似文献   

7.
Transferring processes between different scales and types of mixers is a common operation in industry. Challenges within this operation include the existence of considerable differences in blending conditions between mixer scales and types. Obtaining the correct blending conditions is crucial for the ability to break up agglomerates in order to achieve the desired blend uniformity. Agglomerate break up is often an abrasion process. In this study, the abrasion rate potential of agglomerates is described by the Stokes abrasion (St(Abr)) number of the system. The St(Abr) number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. In this study, the St(Abr) approach demonstrates to be a useful tool to predict the abrasion of agglomerates during blending when technology is transferred between mixer scales/types. Applying the St(Abr) approach revealed a transition point between parameters that determined agglomerate abrasion. This study gave evidence that (1) below this transition point, agglomerate abrasion is determined by a combination of impeller effects and by the kinetic energy density of the powder blend, whereas (2) above this transition point, agglomerate abrasion is mainly determined by the kinetic energy density of the powder blend.  相似文献   

8.
The aim of this study was to investigate the influence of different processing methods on the profiles of 5-aminosalicylic acid dissolution from controlled-release matrix systems based on Eudragit® RL and Eudragit® RS water-insoluble polymers. The pure polymers and their mixtures were studied as matrix formers using different processing methods, i.e., direct compression, wet granulation of the active ingredient with the addition of polymer(s) to the external phase, wet granulation with water, and wet granulation with aqueous dispersions. In comparison with the directly compressed tablets, tablets made by wet granulation with water demonstrated a 6–19% increase in final drug dissolution, whereas when polymers were applied in the external phase during compression, a 0–13% decrease was observed in the amount of drug released. Wet granulation with aqueous polymer dispersions delayed the release of the drug; this was especially marked (a 54–56% decrease in drug release) in compositions, which contained a high amount of Eudragit RL 30D. The release profiles were mostly described by the Korsmeyer–Peppas model or the Hopfenberg model.KEY WORDS: controlled release, matrix tablet, polymethacrylates, release kinetics  相似文献   

9.
The purpose of this research was to study processing variables at the laboratory and pilot scales that can affect hydration rates of xanthan gum matrices containing diclofenac sodium and the rate of drug release. Tablets from the laboratory scale and pilot scale proceedings were made by wet granulation. Swelling indices of xanthan gum formulations prepared with different amounts of water were measured in water under a magnifying lens. Granules were thermally treated in an oven at 60°C, 70°C, and 80°C to studythe effects of elevated temperatures on drug release from xanthan gum matrices. Granules from the pilot scale formulations were bulkier compared to their laboratory scale counterparts, resulting in more porous, softer tablets. Drug release was linear from xanthan gum matrices prepared at the laboratory scale and pilot scales, however, release was faster from the pilot scales. Thermal treatment of the granules did not affect the swelling index and rate of drug release from tablets in both the pilot and laboratory scale proceedings. On the other hand, the release from both proceedings was affected by the amount of water used for granulation and the speed of the impeller during granulation. The data suggest that processing variables that affect the degree of wetness during granulation, such as increase in impeller speed and increase in amount of water used for granulation, also may affect the swelling index of xanthan gum matrices and therefore the rate of drug release.  相似文献   

10.
Briens L  Logan R 《AAPS PharmSciTech》2011,12(4):1358-1365
Chopper presence and then chopper speed was varied during wet high shear granulation of a placebo formulation using a PMA-1 granulator while also varying the impeller speed. The granules were extensively analyzed for differences due to the chopper. The effect of the chopper on the granules varied with impeller speed from no effect at a low impeller speed of 300 rpm to flow interruptions at an impeller speed of 700 rpm to minimal impact at very high impeller speeds as caking at the bowl perimeter obscured the effect of the chopper on the flow pattern. Differences in the granule flowability were minimal. However, it was concluded that the largest fraction of optimal granules would be obtained at an impeller speed of 700 rpm with the chopper at 1,000 rpm allowing balances between flow establishment, segregation, and centrifugal forces.  相似文献   

11.
Porous calcium phosphate pellets were produced according to two granulation processes (low and high shear wet granulations) and drug loaded with five ibuprofen contents (1.75%, 7%, 12.5%, 22%, and 36%) in order to ensure both bone defect filling and local drug delivery. The drug-release kinetics from the two types of pellets was studied using three dissolution apparatuses: paddle apparatus, reciprocating cylinder, and flow-through cell. The paper compared the three dissolution methods and considered the effect of the granulation process on the ibuprofen-release kinetics. Dissolution data were analyzed using the Weibull function as well as the difference (f1) and similarity (f2) factors. Dissolution kinetics was not influenced by the granulation process, regardless of the dissolution apparatus and of the drug content. The comparison of the three dissolution devices indicated that ibuprofen was released faster from granules loaded with 36% of drug content with the reciprocating apparatus, due to the disintegration of the granules occurring during the dissolution test. For the other drug contents, dissolution profiles were not significantly different from one apparatus to another. However, the flow-through cell seemed to be more suitable for the drug-release study of implantable materials.  相似文献   

12.
The aim of this study was to investigate the feasibility of using Eudragit E as a granulating agent for a spray-dried extract fromPhyllanthus niruri to obtain tablets containing a high dose of this product. The granules were developed by wet granulation and contained 2.5%, 5.0%, and 10.0% Eudragit E in the final product concentration. The tablets were produced on a single-punch tablet press by direct compression of granules using 0.5% magnesium stearate as a lubricant. The tablets were elaborated following a 2×3 factorial design, where Eudragit E concentration and compression force were the in-dependent variables, and tensile strength and the extract release of the tablets were the dependent variables. All granules showed better technological properties than the spray-dried extract, including less moisture sorption. The characteristics of the granules were directly dependent on the proportion of Eudragit E in the formulation. In general, all tablets showed high mechanical resistance with less than 1% friability, less moisture sorption, and a slower extract release profile. The Eudragit E concentration and compression force of the tablets significantly influenced both dependent variables studied. In conclusion, Eudragit E was efficient as a granulating agent for the spray-dried extract, but additional studies are needed to further optimize the formuations in order to achieve less water sorption and improve the release of the extract from the tablets. Published: April 27, 2007  相似文献   

13.
The aim of this study was to develop spheronized microparticulates as a drug delivery system using the 1-step closed rotor disk fluid-bed technology, and to scale up the batch spheronization process. Ibuprofen was used as the model drug and microcrystalline cellulose/sodium carboxymethyl cellulose hydrocolloid (Avicel(R) RC-581 or CL-611) was present as the diluent/binder. The mixture, in 1:1 ratio, was blended with and without 1% sodium lauryl sulfate (SLS) and spheronized with the rotor disk insert, using either water or hydroxypropylmethyl cellulose (HPMC) as binder. Fluid-bed machines (Vector/Freund Flo-Coater model) FLM-1 (with 9-inch rotor insert for 0.75 kg) and FLM-15 (with a 12-inch and 19-inch rotor inserts for 1 kg and 5, 10 kg, respectively) were used. The critical process parameters included inlet air temperature, rotor disk speed and configuration, air flow, and rate of binder application. The 1 kg batch containing SLS that was made with 12-inch smooth stainless steel or waffle teflon plates rotating at 500 rpm had desirable characteristics. The sphericity values were 0.88 and 0.91, with percent yield of 85.4 and 91.2 and drug content values of 94.47% and 91.44%, respectively. The spheroids showed good flow properties with respective rapid drug release (Q20 = 83.27 and 91.75). No difference was seen in the Avicel RC-581 and CL-611. Based on the 1 kg data, Avicel RC-581 and smooth stainless steel and waffle teflon plates (12 inch and 19 inch), the batch was scaled up to 5 and 10 kg. The scale-up parameters included rotor speed (124 -300 rpm) and spray rate (90-140 g/min). The scale-up batches had similar flow characteristics, release rate, and size distribution. The geometric mean diameter increased as batch size increased, and slightly bigger spheroids were obtained using the waffle teflon plate. Ibuprofen spheres with very good physical characteristics were developed using the rotor disk fluid-bed technology, a 1-step closed process that did not require additional unit processes.  相似文献   

14.
This study investigated the possibility of producing pectin-based pellets by extrusion/spheronization. The study also identified factors influencing the process and the characteristics of the resulting product. Three types of pectin with different degrees of amid and methoxyl substitution were studied in combination with different granulation liquids (water, calcium chloride, citric acid, and ethanol) and/or microcrystalline cellulose. Pellets were prepared in a power-consumption-controlled, twinscrew extruder; then they were spheronized and dried. The products were characterized by image analysis, sieving analysis, and disintegration and dissolution tests. The results were evaluated by multivariate analysis. Different additives, either in the granulation liquid or in the powder mixture, influenced the ability of the extruded mass to form pellets (the processability) with this technique. However, the various pectin types responded to modifications to a different extent. Short, nearly spherical pellets are obtained with granulation liquids, such as ethanol, that reduce the swelling ability of pectin. Pellets produced with ethanol are, however, mechanically weak and tend to ditintegrate. Pectin molecules with a high degree of free carboxylic acid groups seem to be more sensitive to changes in the granulation liquid. Addition of microcrystalline cellulose as an extrusion aid generally resulted in improvements in shape and size. It was demonstrated that the processability of pectin as well as the characteristics of the products can be influenced in different ways during the process (eg, adding substances to the granulation liquid or to the powder mixture).  相似文献   

15.
The purpose of this research work was to obtain directly compressible agglomerates of ibuprofen with talc by a novel crystallo-co-agglomeration (CCA) technique, which is an extension of spherical crystallization. Ibuprofen-talc agglomerates were prepared using dichloromethane (DCM)-water as the crystallization system. DCM acted as a good solvent for ibuprofen as well as a bridging liquid for agglomeration of crystallized drug with talc. The agglomerates were characterized by differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy and were evaluated for tableting properties and for drug release. The process yielded spherical agglomerates containing ∼95% to 96% wt/wt of ibuprofen. Agglomerates containing talc showed uniform distribution of hydroxypropylmethylcellulose and decreased crystallinity, and deformed under pressure. The miniscular form of ibuprofen and the hydrophobicity of talc governed the drug release rate. The batch containing a higher proportion of talc showed zeroorder kinetics and drug release was extended up to 13 hours. The CCA technique developed in this study is suitable for obtaining agglomerates of drug with talc as an excipient.  相似文献   

16.
The objective of this work was to develop tablet formulations of nimesulide-β-cyclodextrin (NI-β-CD) and meloxicam-γ-cyclodextrin (ME-γ-CD) binary systems. In the case of nimesulide, 3 types of binary systems—physical mixtures, kneaded systems, and coevaporated systems—were studied. In the case of meloxicam, 2 types of binary systems—physical mixtures and kneaded systems—were investigated. Both drug-CD binary systems were prepared at 1∶1 and 1∶2 molar ratio (1∶1M and 1∶2M) and used in formulation studies. The tablet formulations containing drug-CD binary systems prepared by the wet granulation and direct compression methods showed superior dissolution properties when compared with the formulations of the corresponding pure drug formulations. Overall, the dissolution properties of tablet formulations prepared by the direct compression method were superior to those of tablets prepared by the wet granulation method. Selected tablet formulations showed good stability with regard to drug content, disintegration time, hardness, and in vitro dissolution properties over 6 months at 40°C±2°C and 75% relative humidity. Published: May 11, 2007  相似文献   

17.
ABSTRACT: BACKGROUND: A common trend in the research on 2nd generation bioethanol is the focus on intensifying the process and increasing the concentration of water insoluble solids (WIS) throughout the process. However, increasing the WIS content is not without problems. For example, the viscosity of pretreated lignocellulosic materials is known to increase drastically with increasing WIS content. Further, at elevated viscosities, problems arise related to poor mixing of the material, such as poor distribution of the enzymes and/or difficulties with temperature and pH control, which results in possible yield reduction. Achieving good mixing is unfortunately not without cost, since the power requirements needed to operate the impeller at high viscosities can be substantial. This highly important scale-up problem can easily be overlooked. RESULTS: In this work, we monitor the impeller torque (and hence power input) in a stirred tank reactor throughout high solid enzymatic hydrolysis (< 20% WIS) of steam-pretreated Arundo donax and spruce. Two different process modes were evaluated, where either the impeller speed or the impeller power input was kept constant. Results from hydrolysis experiments at a fixed impeller speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength), whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed) it is shown that power input greatly affects the glucose yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. CONCLUSIONS: The results clearly highlight the large differences between the arundo and spruce materials, both in terms of needed energy input, and glucose yields. The impact of power input on glucose yield is furthermore shown to vary significantly between the materials, with spruce being very affected while arundo is not. These findings emphasize the need for substrate specific process solutions, where a short pre-hydrolysis (or viscosity reduction) might be favorable for arundo whereas fed-batch might be a better solution for spruce. RESULTS: In this work, we monitor the impeller torque (and hence power input) in a stirred tank reactor throughout high solid enzymatic hydrolysis (< 20% WIS) of steam-pretreated Arundo donax and spruce. Results from hydrolysis experiments at a stirrer speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength), whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed) it is shown that power input greatly affects the hydrolysis yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. CONCLUSIONS: The results clearly highlight the large differences between the two materials, both in terms of needed energy input, and hydrolysis yields. The impact of power input is furthermore shown to vary significantly between the materials, with spruce being very affected while arundo is not. These findings emphasize the need for substrate specific process solutions, where a short pre-hydrolysis (or viscosity reduction) might be favorable for arundo whereas fed-batch might be a better solution for spruce.  相似文献   

18.
The purpose of this research was to evaluate beta-cyclodextrin (beta-CD) as a vehicle, either singly or in blends with lactose (spray-dried or monohydrate), for preparing a meloxicam tablet. Aqueous solubility of meloxicam in presence of beta-CD was investigated. The tablets were prepared by direct compression and wet granulation techniques. The powder blends and the granules were evaluated for angle of repose, bulk density, compressibility index, total porosity, and drug content. The tablets were subjected to thickness, diameter, weight variation test, drug content, hardness, friability, disintegration time, and in vitro dissolution studies. The effect of beta-CD on the bioavailability of meloxicam was also investigated in human volunteers using a balanced 2-way crossover study. Phase-solubility studies indicated an A(L)-type diagram with inclusion complex of 1:1 molar ratio. The powder blends and granules of all formulations showed satisfactory flow properties, compressibility, and drug content. All tablet formulations prepared by direct compression or wet granulation showed acceptable mechanical properties. The dissolution rate of meloxicam was significantly enhanced by inclusion of beta-CD in the formulations up to 30%. The mean pharmacokinetic parameters (C(max), K(e), and area under the curve [AUC](0-infinity)) were significantly increased in presence of beta-CD. These results suggest that beta-CD would facilitate the preparation of meloxicam tablets with acceptable mechanical properties using the direct compression technique as there is no important difference between tablets prepared by direct compression and those prepared by wet granulation. Also, beta-CD is particularly useful for improving the oral bioavailablity of meloxicam.  相似文献   

19.
The present study was undertaken to evaluate the gum exudates of Terminalia catappa Linn. (TC gum) as a release retarding excipient in oral controlled drug delivery system. The rheological properties of TC gum were studied and different formulation techniques were used to evaluate the comparative drug release characteristics. The viscosity was found to be dependent on concentration and pH. Temperature up to 60°C did not show significant effect on viscosity. The rheological kinetics evaluated by power law, revealed the shear thinning behavior of the TC gum dispersion in water. Matrix tablets of TC gum were prepared with the model drug dextromethorphan hydrobromide (DH) by direct compression, wet granulation and solid dispersion techniques. The dissolution profiles of the matrix tablets were compared with the pure drug containing capsules using the USP Basket apparatus with 500 ml phosphate buffer of pH 6.8 as a dissolution medium. The drug release from the compressed tablets containing TC gum was comparatively sustained than pure drug containing capsules. Even though all the formulation techniques showed reduction of dissolution rate, aqueous wet granulation showed the maximum sustained release of more than 8 h. The release kinetics estimated by the power law revealed that the drug release mechanism involved in the dextromethorphan matrix is anomalous transport as indicated by the release exponent n values. Thus the study confirmed that the TC gum might be used in the controlled drug delivery system as a release-retarding polymer.  相似文献   

20.
Scale-up synthesis of lipase-catalyzed palm esters in stirred-tank reactor   总被引:1,自引:0,他引:1  
Lipase-catalyzed production of palm esters by alcoholysis of palm oil with oleyl alcohol in n-hexane was performed in 2L stirred-tank reactor (STR). Investigation on the performance of reactor operation was carried out in batch mode STR with single impeller mounted on the centrally located shaft. Rushton turbine (RT) impellers provide the highest reaction yield (95.8%) at lower agitation speed as compared to AL-hydrofoil (AL-H) and 2-bladed elephant ear (EE) impellers. Homogenous enzyme particles suspension was obtained at 250 rpm by using RT impeller. At higher impeller speed, the shear effect on the enzyme particles caused by agitation has decreased the reaction performance. Palm esters reaction mixture in STR follows Newtons' law due to the linear relation between the shear stress (tau) and shear rate (dupsilon/dy). High stability of Lipozyme RM IM was observed as shown by its ability to be repeatedly used to give high percentage yield (79%) of palm esters even after 15 cycles of reaction. The process was successfully scale-up to 75 L STR (50 L working volume) based on a constant impeller tip speed approach, which gave the yield of 97.2% after 5h reaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号