首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature dependence of photoinhibition and photoprotective mechanisms (10-35 degrees C) was investigated for Chenopodium album leaves grown at 25 degrees C under 500 micro mol quanta m(-2) s(-1). The fraction of active photosystem II (PSII) was determined after photoinhibitory treatment at different temperatures in the presence and absence of lincomycin, an inhibitor of chloroplast-encoded protein synthesis. In the absence of lincomycin, leaves were more tolerant to photoinhibition at high (25-35 degrees C) than at low (11-15 degrees C) temperatures. In the presence of lincomycin, the variation in the tolerance to photoinactivation became relatively small. The rate constant of photoinactivation (k(pi)) was stable at 25-35 degrees C and increased by 50% with temperature decrease from 25 to 11 degrees C. The rate constant of recovery of inactivated PSII (k(rec)) was more sensitive to temperature; it was very low at 11 degrees C and increased by an order of magnitude at 35 degrees C. We conclude that the recovery of photoinactivated PSII plays an essential role in photoprotection at 11-35 degrees C. Partitioning of light energy to various photoprotective mechanisms was further analyzed to reveal the factor responsible for k(pi). The fraction of energy utilized in photochemistry was lower at lower temperatures. Although the fraction of heat dissipation increased with decreasing temperatures, the excess energy that is neither utilized by photochemistry nor dissipated by heat dissipation was found to be greater at lower temperatures. The k(pi) value was strongly correlated with the excess energy, suggesting that the excess energy determines the rate of photoinactivation.  相似文献   

2.
The mechanisms of photosynthetic adaptation to different combinations of temperature and irradiance during growth, and especially the consequences of exposure to high light (2000 micro mol m(-2) s(-1) PPFD) for 5 min, simulating natural sunflecks, was studied in bean plants (Phaseolus vulgaris L.). A protocol using only short (3 min) dark pre-treatment was introduced to maximize the amount of replication possible in studies of chlorophyll fluorescence. High light at low temperature (10 degrees C) significantly down-regulated photosynthetic electron transport capacity [as measured by the efficiency of photosystem II (PSII)], with the protective acclimation allowing the simulated sunflecks to be used more effectively for photosynthesis by plants grown in low light. The greater energy dissipation by thermal processes (lower F(v)'/F(m)' ratio) at low temperature was related to increased xanthophyll de-epoxidation and to the fact that photosynthetic carbon fixation was more limiting at low than at high temperatures. A key objective was to investigate the role of photorespiration in acclimation to irradiance and temperature by comparing the effect of normal (21 kPa) and low (1.5 kPa) O(2) concentrations. Low [O(2)] decreased F(v)/F(m) and the efficiency of PSII (Phi(PSII)), related to greater PSII down-regulation in cold pre-treated plants, but minimized further inhibition by the mild 'sunfleck' treatment used. Results support the hypothesis that photorespiration provides a 'safety-valve' for excess energy.  相似文献   

3.
Field measurements of photosynthesis of Vitis vinifera cv. Semillon leaves in relation to a hot climate, and responses to photon flux densities (PFDs) and internal CO(2) concentrations (c(i) ) at leaf temperatures from 20 to 40 °C were undertaken. Average rates of photosynthesis measured in situ decreased with increasing temperature and were 60% inhibited at 45 °C compared with 25 °C. This reduction in photosynthesis was attributed to 15-30% stomatal closure. Light response curves at different temperatures revealed light-saturated photosynthesis optimal at 30 °C but also PFDs saturating photosynthesis increased from 550 to 1200 μmol (photons) m(-2)s(-1) as temperatures increased. Photosynthesis under saturating CO(2) concentrations was optimal at 36 °C while maximum rates of ribulose 1,5-bisphosphate (RuBP) carboxylation (V(cmax)) and potential maximum electron transport rates (J(max)) were also optimal at 39 and 36 °C, respectively. Furthermore, the high temperature-induced reduction in photosynthesis at ambient CO(2) was largely eliminated. The chloroplast CO(2) concentration at the transition from RuBP regeneration to RuBP carboxylation-limited assimilation increased steeply with an increase in leaf temperature. Semillon assimilation in situ was limited by RuBP regeneration below 30 °C and above limited by RuBP carboxylation, suggesting high temperatures are detrimental to carbon fixation in this species.  相似文献   

4.
The potential of photosynthesis to recover from winter stress was studied by following the thermoluminescence (TL) and chlorophyll fluorescence changes of winter pine needles during the exposure to room temperature (20 degrees C) and an irradiance of 100 micromol m(-2) s(-1). TL measurements of photosystem II (PSII) revealed that the S(2)Q(B)(-) charge recombinations (the B-band) were shifted to lower temperatures in winter pine needles, while the S(2)Q(A)(-) recombinations (the Q-band) remained close to 0 degrees C. This was accompanied by a drastically reduced (65%) PSII photochemical efficiency measured as F(v)/ F(m,) and a 20-fold faster rate of the fluorescence transient from F(o) to F(m) as compared to summer pine. A strong positive correlation between the increase in the photochemical efficiency of PSII and the increase in the relative contribution of the B-band was found during the time course of the recovery process. The seasonal dynamics of TL in Scots pine needles studied under field conditions revealed that between November and April, the contribution of the Q- and B-bands to the overall TL emission was very low (less than 5%). During spring, the relative contribution of the Q- and B-bands, corresponding to charge recombination events between the acceptor and donor sides of PSII, rapidly increased, reaching maximal values in late July. A sharp decline of the B-band was observed in late summer, followed by a gradual decrease, reaching minimal values in November. Possible mechanisms of the seasonally induced changes in the redox properties of S(2)/S(3)Q(B)(-) recombinations are discussed. It is proposed that the lowered redox potential of Q(B) in winter needles increases the population of Q(A)(-), thus enhancing the probability for non-radiative P680(+)Q(A)(-) recombination. This is suggested to enhance the radiationless dissipation of excess light within the PSII reaction center during cold acclimation and during cold winter periods.  相似文献   

5.
等渗盐胁迫下Na^+和Cl^-对大豆幼苗光合作用的离子效应   总被引:1,自引:0,他引:1  
研究和比较了等渗(-0.53MPa)的PEG-6000、NaCl、钠盐(无Cl-)和氯化物(无Na )溶液处理6d对栽培大豆品种‘Lee68’(耐盐性较强)和‘N23674’(耐盐性较弱)幼苗光合作用的离子效应。结果表明:PEG-6000处理使两品种叶片叶绿素含量和Rubisco活性较对照低,但降幅不如同样渗透压的NaCl、钠盐(无Cl-)和氯化物(无Na )溶液明显。PSII最大光化学效率(Fv/Fm)、电子传递速率(ETR)和PSII光化学的有效量子产额(Fv'/Fm')在PEG-6000处理2d和6d时显著下降,但在3种等渗盐处理下,多显著下降。两品种叶片气孔导度(Gs)和净光合速率(Pn)在4种胁迫处理下均显著下降,其中在3种盐处理下更明显,但胞间CO2浓度(Ci)仅在PEG-6000处理时下降,在盐处理下反而升高。两品种叶片叶绿素含量、Rubisco活性、Fv/Fm、ETR、Fv'/Fm'、Pn、Gs等在氯化物(无Na )溶液处理的下降幅度和叶绿体中Cl-含量及其与Na 总量的增加幅度均大于钠盐(无Cl-)处理的,在耐盐性弱的‘N23674’品种中更明显。可见,在NaCl胁迫对栽培大豆幼苗光合作用的毒害效应中,渗透胁迫较轻,离子毒害较重,其中Cl-的毒害大于Na 的。  相似文献   

6.
We investigated the effect of temperature and irradiance on leaf respiration (R, non-photorespiratory mitochondrial CO(2) release) of snow gum (Eucalyptus pauciflora Sieb. ex Spreng). Seedlings were hydroponically grown under constant 20 degrees C, controlled-environment conditions. Measurements of R (using the Laisk method) and photosynthesis (at 37 Pa CO(2)) were made at several irradiances (0-2,000 micromol photons m(-2) s(-1)) and temperatures (6 degrees C-30 degrees C). At 15 degrees C to 30 degrees C, substantial inhibition of R occurred at 12 micromol photons m(-2) s(-1), with maximum inhibition occurring at 100 to 200 micromol photons m(-2) s(-1). Higher irradiance had little additional effect on R at these moderate temperatures. The irradiance necessary to maximally inhibit R at 6 degrees C to 10 degrees C was lower than that at 15 degrees C to 30 degrees C. Moreover, although R was inhibited by low irradiance at 6 degrees C to 10 degrees C, it recovered with progressive increases in irradiance. The temperature sensitivity of R was greater in darkness than under bright light. At 30 degrees C and high irradiance, light-inhibited rates of R represented 2% of gross CO(2) uptake (v(c)), whereas photorespiratory CO(2) release was approximately 20% of v(c). If light had not inhibited leaf respiration at 30 degrees C and high irradiance, R would have represented 11% of v(c). Variations in light inhibition of R can therefore have a substantial impact on the proportion of photosynthesis that is respired. We conclude that the rate of R in the light is highly variable, being dependent on irradiance and temperature.  相似文献   

7.
C(4)-type photosynthesis is known to vary with growth and measurement temperatures. In an attempt to quantify its variability with measurement temperature, the photosynthetic parameters - the maximum catalytic rate of the enzyme ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), the maximum catalytic rate of the enzyme phosphoenolpyruvate carboxylase (PEPC) (V(pmax)) and the maximum electron transport rate (J(max)) - were examined. Maize plants were grown in climatic-controlled phytotrons, and the curves of net photosynthesis (A(n)) versus intercellular air space CO(2) concentrations (C(i)), and A(n) versus photosynthetic photon flux density (PPFD) were determined over a temperature range of 15-40 degrees C. Values of V(cmax), V(pmax) and J(max) were computed by inversion of the von Caemmerer & Furbank photosynthesis model. Values of V(pmax) and J(max) obtained at 25 degrees C conform to values found in the literature. Parameters for an Arrhenius equation that best fits the calculated values of V(cmax), V(pmax) and J(max) are then proposed. These parameters should be further tested with C(4) plants for validation. Other model key parameters such as the mesophyll cell conductance to CO(2) (g(i)), the bundle sheath cells conductance to CO(2) (g(bs)) and Michaelis-Menten constants for CO(2) and O(2) (K(c), K(p) and K(o)) also vary with temperature and should be better parameterized.  相似文献   

8.
There are large inter- and intraspecific differences in the temperature dependence of photosynthesis, but the physiological cause of the variation is poorly understood. Here, the temperature dependence of photosynthesis was examined in three ecotypes of Plantago asiatica transplanted from different latitudes, where the mean annual temperature varies between 7.5 and 16.8 degrees C. Plants were raised at 15 or 30 degrees C, and the CO(2) response of photosynthetic rates was determined at various temperatures. When plants were grown at 30 degrees C, no difference was found in the temperature dependence of photosynthesis among ecotypes. When plants were grown at 15 degrees C, ecotypes from a higher latitude maintained a relatively higher photosynthetic rate at low measurement temperatures. This difference was caused by a difference in the balance between the capacities of two processes, ribulose-1,5-bisphosphate regeneration (J(max)) and carboxylation (V(cmax)), which altered the limiting step of photosynthesis at low temperatures. The organization of photosynthetic proteins also varied among ecotypes. The ecotype from the highest latitude increased the J(max) : V(cmax) ratio with decreasing growth temperature, while that from the lowest latitude did not. It is concluded that nitrogen partitioning in the photosynthetic apparatus and its response to growth temperature were different among ecotypes, which caused an intraspecific variation in temperature dependence of photosynthesis.  相似文献   

9.
It is anticipated that enrichment of the atmosphere with CO(2) will increase photosynthetic carbon assimilation in C3 plants. Analysis of controlled environment studies conducted to date indicates that plant growth at concentrations of carbon dioxide ([CO(2)]) anticipated for 2050 ( approximately 550 micromol mol(-1)) will stimulate leaf photosynthetic carbon assimilation (A) by 20 to 40%. Simultaneously, concentrations of tropospheric ozone ([O(3)]) are expected to increase by 2050, and growth in controlled environments at elevated [O(3)] significantly reduces A. However, the simultaneous effects of both increases on a major crop under open-air conditions have never been tested. Over three consecutive growing seasons > 4700 individual measurements of A, photosynthetic electron transport (J(PSII)) and stomatal conductance (g(s)) were measured on Glycine max (L.) Merr. (soybean). Experimental treatments used free-air gas concentration enrichment (FACE) technology in a fully replicated, factorial complete block design. The mean A in the control plots was 14.5 micromol m(-2) s(-1). At elevated [CO(2)], mean A was 24% higher and the treatment effect was statistically significant on 80% of days. There was a strong positive correlation between daytime maximum temperatures and mean daily integrated A at elevated [CO(2)], which accounted for much of the variation in CO(2) effect among days. The effect of elevated [CO(2)] on photosynthesis also tended to be greater under water stress conditions. The elevated [O(3)] treatment had no statistically significant effect on mean A, g(s) or J(PSII) on newly expanded leaves. Combined elevation of [CO(2)] and [O(3)] resulted in a slightly smaller increase in average A than when [CO(2)] alone was elevated, and was significantly greater than the control on 67% of days. Thus, the change in atmospheric composition predicted for the middle of this century will, based on the results of a 3 year open-air field experiment, have smaller effects on photosynthesis, g(s) and whole chain electron transport through photosystem II than predicted by the substantial literature on relevant controlled environment studies on soybean and likely most other C3 plants.  相似文献   

10.
The internal conductance to CO(2) transfer from intercellular spaces to chloroplasts poses a major limitation to photosynthesis, but few studies have investigated its temperature response. The aim of this study was to determine the temperature response of photosynthesis and internal conductance between 10 degrees C and 35 degrees C in seedlings of a deciduous forest tree species, Quercus canariensis. Internal conductance was estimated via simultaneous measurements of gas exchange and chlorophyll fluorescence ("variable J method"). Two of the required parameters, the intercellular photocompensation point (C(i)*) and rate of mitochondrial respiration in the light (R(d)), were estimated by the Laisk method. These were used to calculate the chloroplastic photocompensation point (Gamma*) in a simultaneous equation with g(i). An independent estimate of internal conductance was obtained by a novel curve-fitting method based on the curvature of the initial Rubisco-limited portion of an A/C(i) curve. The temperature responses of the rate of Rubisco carboxylation (V(cmax)) and the RuBP limited rate of electron transport (J(max)) were determined from chloroplastic CO(2) concentrations. The rate of net photosynthesis peaked at 24 degrees C. C(i)* was similar to reports for other species with a C(i)* of 39 micromol mol(-1) at 25 degrees C and an activation energy of 34 kJ mol(-1). Gamma* was very similar to the published temperature response for Spinacia oleracea from 20 degrees C to 35 degrees C, but was slightly greater at 10 degrees C and 15 degrees C. J(max) peaked at 30 degrees C, whereas V(cmax) did not reach a maximum between 10 degrees C and 35 degrees C. Activation energies were 49 kJ mol(-1) for V(cmax) and 100 kJ mol(-1) for J(max). Both methods showed that internal conductance doubled from 10 degrees C to 20 degrees C, and then was nearly temperature-independent from 20 degrees C to 35 degrees C. Hence, the temperature response of internal conductance could not be fitted to an Arrhenius function. The best fit to estimated g(i) was obtained with a three-parameter log normal function (R(2)=0.98), with a maximum g(i) of 0.19 mol m(-2) s(-1) at 29 degrees C.  相似文献   

11.
Leaf gas exchange and temperature response were measured to assess temperature acclimation within a tree canopy in climatically contrasting genotypes of Acer rubrum L. Over the course of two 50 d continuous periods, growth temperature was controlled within tree crowns and the steady-state rate of leaf gas exchange was measured. Data were then modelled to calculate the influence of genotype variation and vertical distribution of physiological activity on carbon uptake. The maximal rate of Rubisco carboxylation (V(cmax)), the maximum rate of electron transport (J(max)), leaf dark respiration rate (R(d)), maximum photosynthesis (A(max)), and the CO(2) compensation point (Gamma) increased with temperature during both (i) a constant long-term (50 d) daytime temperature or (ii) ambient daytime temperature with short-term temperature control (25-38 degrees C). In addition, within-crown variation in the temperature response of photosynthesis and R(d) was influenced by acclimation to local microclimate temperature gradients. Results indicated that carbon uptake estimates could be overestimated by 22-25% if the vertical distribution of temperature gradients is disregarded. Temperature is a major factor driving photosynthetic acclimation and within-crown gas exchange variation. Thus, this study established the importance of including spatial acclimation to temperature- and provenance-, ecotype-, and/or genotype-specific parameter sets into carbon uptake models.  相似文献   

12.
Important life history parameters of the mealybug, Maconellicoccus hirsutus (Green), were characterized on hibiscus (Hibiscus rosa-sinensis L.) cuttings at six constant temperatures between 15 and 35 degrees C. The development of M. hirsutus was the fastest at 27 degrees C, where the mealybugs completed development in approximately 29 d. The lower (T(min)) and upper (T(max)) developmental thresholds and the optimal developmental temperature (T(opt)) for the development of female mealybugs were estimated as 14.5, 35, and 29 degrees C, respectively. The thermal constant (K), which is the number of temperature-day or degree-day units required for development, of the females was 347 DD. The original distribution range prediction (based on T(min) = 17.5 degrees C and K = 300 DD) indicated that M. hirsutus could complete at least one generation in all of the continental United States. However, results of this study suggested that the distribution range of M. hirsutus may expand northward because of the lower T(min), and the predicted number of generations in a year may be lower because of the higher K required to complete each generation. The average cumulative survival rate of M. hirsutus at 25 and 27 degrees C was 72%, which was significantly higher than 51 and 62% at 20 and 30 degrees C, respectively. M. hirsutus reproduced sexually, with each mated female producing 260-300 eggs between 20 and 27 degrees C but only approximately 100 eggs at 30 degrees C. Female longevity was reduced from 28 d at 20 degrees C to 19-21 d at 25-30 degrees C. At 27 degrees C, the net reproductive rate (R(o)) was estimated at 165 female symbol/female symbol, the intrinsic rate of population increase (r(m)) was 0.119 (female symbol/female symbol/d), the generation time (T(G)) was 43 d, and the doubling time (DT) was 5.8 d. The life table statistics suggested that the currently released biological control agents, which have higher r(m) than M. hirsutus, will be able to complete more generations than the mealybug within the tested temperature range; thus, they are effective against M. hirsutus.  相似文献   

13.
与唐古特大黄相比,唐古特山莨菪的表观光合量子效率(AQY)较高,但最大净光合速率(Pmax)较低。在光强小于1200μmolm-2s-1时,后者用于碳同化的电子传递占总光合电子传递的比例(JC/JF)比前者高,而分配于光呼吸的电子传递(JO/JF)及Rubisco氧化和羧化速率的比值(VO/VC)则相反;光强大于1200μmolm-2s-1以后两种植物的这些参数都趋向稳定。随光强增加,后者叶片吸收光能分配于热耗散(D)的增加斜率较前者高,表明两高山植物对强辐射的适应方式略有不同。加强光呼吸途径的耗能代谢和PSII天线热耗散份额是唐古特山莨菪适应高原强辐射的主要方式,而提高叶片光合能力则是唐古特大黄的一种适应方式。  相似文献   

14.
Photosynthetic gas exchange, modulated chlorophyll fluorescence, rapid fluorescence induction kinetics, and the polyphasic fluorescence transients were used to evaluate PSII photochemistry in the halophyte Suaeda salsa exposed to a combination of high salinity (100-400 mM NaCl) and heat stress (35-47.5 degrees C, air temperature). CO(2) assimilation rate increased slightly with increasing salt concentration up to 300 mM NaCl and showed no decrease even at 400 mM NaCl. Salinity treatment showed neither effects on the maximal efficiency of PSII photochemistry (F(v)/F(m)), the rapid fluorescence induction kinetics, and the polyphasic fluorescence transients in dark-adapted leaves, nor effects on the efficiency of excitation energy capture by open PSII reaction centres (F(v)'/F(m)') and the actual PSII effciency (Phi(PSII)), photochemical quenching (q(P)), and non-photochemical quenching (q(N)) in light-adapted leaves. The results indicate that high salinity had no effects on PSII photochemistry either in a dark-adapted state or in a light-adapted state. With increasing temperature, CO(2) assimilation rate decreased significantly and no net CO(2) assimilation was observed at 47.5 degrees C. Salinity treatment had no effect on the response of CO(2) assimilation to high temperature when temperature was below 40 degrees C. At 45 degrees C, CO(2) assimilation rate in control plants decreased to zero, but the salt-adapted plants still maintained some CO(2) assimilation capacity. On the other hand, the responses of PSII photochemistry to heat stress was modified by salinity treatment. When temperature was above 35 degrees C, the declines in F(v)/F(m), Phi(PSII), F(v)'/F(m)', and q(P) were smaller in salt-adapted leaves compared to control leaves. This increased thermostability was independent of the degree of salinity, since no significant changes in the above-described fluorescence parameters were observed among the plants treated with different concentrations of NaCl. During heat stress, a very clear K step as a specific indicator of damage to the O(2)-evolving complex in the polyphasic fluorescence transients appeared in control plants, but did not get pronounced in salt-adapted plants. In addition, a greater increase in the ratio (F(i)-F(o))/(F(p)-F(o)) which is an expression of the proportion of the Q(B)-non-reducing PSII centres was observed in control plants rather than in salt-adapted plants. The results suggest that the increased thermostability of PSII seems to be associated with the increased resistance of the O(2)-evolving complex and the reaction centres of PSII to high temperature.  相似文献   

15.
砂仁不同叶位叶片的光合作用和氧化胁迫   总被引:5,自引:0,他引:5  
衰老时砂仁叶片Pmax降低,这与叶片Gs、Chi含量和可溶性蛋白质含量的降低有关.随着叶片的衰老,NPQ、AQY、F/Fm、φPsIl和qp均降低,热耗散减少,光抑制加剧,衰老后期出现光破坏.但这些参数下降的幅度均小于Pmax下降幅度.光暗反应失衡,活性氧生成增加.衰老初期(老化)叶片MDA含量没有升高,衰老中后期叶片MDA含量显著升高,表明老化叶片能有效地耗散或清除活性氧,衰老叶片则不能,尽管其sOD、APX和POD等抗氧化酶活力显著升高.上述结果表明砂仁叶片老化与氧化胁迫关系不大,衰老与氧化胁迫密切相关.  相似文献   

16.
BACKGROUND AND AIMS: Stem respiration of trees is a major, but poorly assessed component of the carbon balance of forests, and important for geo-chemistry. Measurements are required under naturally changing seasonal conditions in different years. Therefore, intra- and inter-annual carbon fluxes of stems in forests were measured continuously from April to November in three consecutive years. METHODS: Stem respiratory CO2 fluxes of 50-year-old Scots pine (Pinus sylvestris) trees were continuously measured with a CO2 analyser, and, concomitantly, stem circumference, stem and air temperature and other environmental factors and photosynthesis, were also measured automatically. KEY RESULTS: There were diurnal, seasonal and inter-annual changes in stem respiration, which peaked at 1600 h during the day and was highest in July. The temperature coefficient of stem respiration (Q10) was greater during the growing season than when growth was slow or had stopped, and more sensitive to temperature in the growing season. The annual Q10 remained relatively constant at about 2 over the three years, while respiration at a reference temperature of 15 degrees C (R15) was higher in the growing than in the non-growing season (1.09 compared with 0.78 micromol m(-2) stem surface s(-1)), but was similar between the years. Maintenance respiration was 76 %, 82 % and 80 % of the total respiration of 17.46, 17.26 and 19.35 mol m2 stem surface in 2001, 2002 and 2003, respectively. The annual total stem respiration of the stand per unit ground area was 75.97 gC m(-2) in 2001 and 74.28 gC m(-2) in 2002. CONCLUSIONS: Stem respiration is an important component in the annual carbon balance of a Scots pine stand, contributing 9 % to total carbon loss from the ecosystem and consuming about 8 % of the carbon of the ecosystem gross primary production. Stem (or air) temperature was the most important predictor of stem carbon flux. The magnitude of stem respiration is modified by photosynthesis and tree growth. Solar radiation indirectly affects stem respiration through its effect on photosynthesis.  相似文献   

17.
The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. This enzyme facilitates the release of sugar phosphate inhibitors from Rubisco catalytic sites thereby influencing carbamylation. T(1) progeny of transgenic Flaveria bidentis (a C(4) dicot) containing genetically reduced levels of Rubisco activase were used to explore the role of the enzyme in C(4) photosynthesis at high temperature. A range of T(1) progeny was screened at 25 degrees C and 40 degrees C for Rubisco activase content, photosynthetic rate, Rubisco carbamylation, and photosynthetic metabolite pools. The small isoform of F. bidentis activase was expressed and purified from E. coli and used to quantify leaf activase content. In wild-type F. bidentis, the activase monomer content was 10.6+/-0.8 micromol m(-2) (447+/-36 mg m(-2)) compared to a Rubisco site content of 14.2+/-0.8 micromol m(-2). CO(2) assimilation rates and Rubisco carbamylation declined at both 25 degrees C and 40 degrees C when the Rubisco activase content dropped below 3 mumol m(-2) (125 mg m(-2)), with the status of Rubisco carbamylation at an activase content greater than this threshold value being 44+/-5% at 40 degrees C compared to 81+/-2% at 25 degrees C. When the CO(2) assimilation rate was reduced, ribulose-1,5-bisphosphate and aspartate pools increased whereas 3-phosphoglycerate and phosphoenol pyruvate levels decreased, demonstrating an interconnectivity of the C(3) and C(4) metabolites pools. It is concluded that during short-term treatment at 40 degrees C, Rubisco activase content is not the only factor modulating Rubisco carbamylation during C(4) photosynthesis.  相似文献   

18.
Temperature effects on the kinetic properties of phosphofructokinase (PFK) purified from skeletal muscle of the golden-mantled ground squirrel, Spermophilus lateralis, were examined at 37 degrees C and 5 degrees C, values characteristic of body temperatures in euthermia vs. hibernation. The enzyme showed reduced sensitivity to all activators at 5 degrees C, the K(a) values for AMP, ADP, NH(4) (+) and F2,6P(2) were 3-11-fold higher at 5 degrees C than at 37 degrees C. Inhibition by citrate was not affected whereas phosphoenolpyruvate, ATP and urea became more potent inhibitors at low temperature. While typically considered an activator of PFK activity, inorganic phosphate performed as an inhibitor at 5 degrees C. Decreasing temperature alone causes the actions of inorganic phosphate to change from activation to inhibition. We found that K(m) values for ATP remained constant while V(max) dropped significantly upon the addition of phosphate. Phosphate inhibition at 5 degrees C was noncompetitive with respect to ATP and the K(i) was 0.15 +/- 0.01 mm (n = 4). The results indicate that PFK is less likely to be activated in cold torpid muscle; PFK is less sensitive to changing adenylate levels at the low temperatures characteristic of torpor, and PFK is clearly much less sensitive to biosynthetic signals. All of these characteristics of hibernator PFK would serve to reduce glycolytic rate and help to preserve carbohydrate reserves during torpor.  相似文献   

19.
供氮和增温对倍增二氧化碳浓度下荫香叶片光合作用的影响   总被引:15,自引:3,他引:12  
供给0~0.6 mg N的盆栽荫香(Cinnamomum burmannii)幼树分别生长在倍增CO 2(+CO2,731 μmol·mol-1)和正常空气CO 2浓度(CO 2,365 μmol·mol-1)的生长箱内,昼夜温度分别为25/23 ℃和32/25 ℃,自然光照下生长30 d.以生长在CO2和25/23 ℃下的植株为对照研究增温和氮对+CO2叶片光合作用的影响.结果表明,在+CO2和25/23 ℃下无氮和氮处理植株的平均光合速率(Pnsat)较+CO2和32/25 ℃下的叶片高5.1%,温度增高降低叶片Pnsat;而Pnsat随供氮而增高.在+CO2条件下,生长在32/25 ℃下的叶片Rubisco最大羧化速率(Vcmax)和最大电子传递速率(Jmax)较25/23 ℃下的低(P<0.05),温度增高降低+CO2下叶片的Vcmax和Jmax在+CO2下叶片光合呼吸速率(Rp)较低,生长温度增高提升Rp.在CO2下生长温度从25/23 ℃增至32/25 ℃,叶片的Rubisco含量(NR)和Rubisco活化中心浓度(M)降低,而供氮能增高NR和M.供氮能减缓温度增高对倍增CO2下荫香叶片光合作用的限制.  相似文献   

20.
Marama bean, Tylosema esculentum, is a tuberous legume native to the Kalahari region of Southern Africa where it grows under high temperatures (typical daily max 37 degrees C during growing season) and radiation (frequently in excess of 2000 micromol m(-2) s(-1)) in sandy soils with low rainfall. These conditions might be expected to select for increased water-use efficiency of photosynthesis. However, marama was found to give similar leaf photosynthetic rates to other C3 plants for a given internal leaf CO2 concentration and Rubisco content. Under conditions of increasing drought, no increase in water-use efficiency of photosynthesis was observed, but stomata closed early and preceded any change in leaf water potential. The possibility of subtle adaptations of photosynthetic characteristics to its natural environment were investigated at the level of Rubisco kinetics. The specificity factor of marama Rubisco was slightly lower than that of wheat, but the apparent Km for CO2 in air (Km') was about 20% lower than that of wheat. This is consistent with better adaptation for efficient photosynthesis at high temperatures in marama compared to wheat, although the net benefit is predicted to be very small (<0.5% at 35 degrees C). The sequence of marama rbcL gene shows 27 deduced amino acid residue differences from that for wheat, and the possibility that one or more of these cause the difference in Rubisco Km' is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号