首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The phylogeny of the family Tephritidae (Diptera: Tephritidae) was reconstructed from mitochondrial 12S, 16S, and COII gene fragments using 87 species, including 79 tephritid and 8 outgroup species. Minimum evolution and Bayesian trees suggested the following phylogenetic relationships: (1) A sister group relationship between Ortalotrypeta and Tachinisca, and their basal phylogenetic position within Tephritidae; (2) a sister group relationship between the tribe Acanthonevrini and Phytalmiini; (3) monophyly of Plioreocepta, Taomyia and an undescribed new genus, and their sister group relationship with the subfamily Tephritinae; (4) a possible sister group relationship of Cephalophysa and Adramini; and (5) reconfirmation of monophyly for Trypetini, Carpomyini, Tephritinae, and Dacinae. The combination of 12S, 16S, and COII data enabled resolution of phylogenetic relationships among the higher taxa of Tephritidae.  相似文献   

3.
石斑鱼因其种类繁多、分布广泛及缺乏显著的形体特征,使其系统分类的研究颇为困难。为探讨中国近海石斑鱼类的系统进化关系,通过PCR扩增获得了石斑鱼亚科(Epinephelinae)6属30个种类的线粒体16SrDNA基因片段序列。采用多个生物软件对序列变异和碱基组成进行分析,计算了Kimura2parameter遗传距离、转换/颠换比等遗传信息指数,并结合GenBank石斑鱼属的同源序列,以多纹长尾(Pronotogrammusmultifasciatus)和皮氏叫姑鱼(Johniusbelengerii)为外群构建NJ、MP和ML系统树。根据所得分子依据并结合形态学特征,推论如下:1)在本研究的30种石斑鱼中,鳃棘鲈属(Plectropomus)最先分化,并呈明显单系性;九棘鲈属(Cephalopholis)是一个单系群,并且较石斑鱼属(Epinephelus)原始;侧牙鲈属(Variola)的进化地位介于鳃棘鲈属与九棘鲈属之间;2)宽额鲈(Promicropslanceolatus)可以归入石斑鱼属,而驼背鲈(Cromileptesaltivelis)也与石斑鱼属有很近的亲缘关系,甚至可能是石斑鱼属内的特化类群;3)石斑鱼属内部存在两个平行进化的姐妹分支,分支内部的种类组成与地理分布无关,暗示了石斑鱼属早期的分化模式。  相似文献   

4.
The crab genus Brachynotus de Haan, 1833 is restricted to the intertidal and shallow subtidal of the Mediterranean and northeastern Atlantic. It is presently recognized to consist of four species, of which three (B. foresti, B. gemmellari and B. sexdentatus) are endemic to the Mediterranean. The fourth species, B. atlanticus, is found along the Atlantic coasts of northern Africa and southern Europe, but also extends into the western Mediterranean. This high level of endemism suggests that speciation within Brachynotus is strongly correlated with the geography and geology of the Mediterranean Sea. A molecular phylogeny based on the mitochondrial large subunit (16S) rRNA gene indicates that the four species of Brachynotus form a monophyletic group within Atlantic Varunidae. The DNA sequence data also show that the genus Brachynotus can be subdivided into two species groups, one comprising B. atlanticus and B. foresti, and the other one B. gemmellari and B. sexdentatus. While B. atlanticus and B. foresti are clearly genetically distinct, B. gemmellari and B. sexdentatus are identical in the studied region of the 16S rRNA gene, suggesting a recent separation or continuing gene flow.  相似文献   

5.
Cui AM  Huang Y 《遗传》2012,34(5):597-608
为了构建稳健的直翅目主要类群间的系统发生关系并探讨16S rRNA基因序列在构建直翅目昆虫不同分类阶元系统发生关系时的可行性、功效以及性能,文章测定了直翅目4总科9科18种昆虫的16S rRNA基因全序列,联合已知该基因全序列的其他40种昆虫,构建了直翅目主要类群之间的系统发生关系,并分析了16SrRNA基因全序列的系统发生性能和功效。结果表明,直翅目昆虫的16S rRNA基因全长平均为1 310 bp;除生活方式特化的蚤蝼总科和蝼蛄总科的地位无法确定外,直翅目其他主要类群系统发生关系比较稳定;蝗总科下除了斑翅蝗科和槌角蝗科外,剑角蝗科、斑腿蝗科、网翅蝗科都不是单系群,且用不同的方法构建的系统发生树中聚类情况完全一致,各科间遗传距离差异不大,建议将其合为一科;锥头蝗科、瘤锥蝗科和癞蝗科间的遗传距离差异也不大;在构建系统发生树时,16S rRNA基因环区的信息量要比茎区的大;16S rRNA基因可以构建可靠的直翅目属与种水平和目与亚目高级阶元的系统发生关系,但对科和总科阶元缺乏足够的分辨力。  相似文献   

6.
The molecular phylogeny of the gobioid fishes, comprising 33 genera and 43 valid species, was examined by use of complete mitochondrial 12S rRNA and tRNA(VAL)genes. Both parsimony and neighbor-joining analyses revealed comparable results and are generally congruent with those of morphological studies. The Odontobutis, which was always placed at the base of the phylogenetic trees, can be treated as a sister group of all other nonrhyacichthyid gobioids. Within eleotrid fishes, the monophyly of the Eleotrinae is strongly supported by molecular data. The Butinae is closer to fishes with five branchiostegal rays and should be treated as a sister group of the latter. The group with five branchiostegal rays, except for sicydiines, can be divided into two groups according to their epural counts. Fish with one epural, the Gobiinae of Pezold plus Microdesmidae, form a monophyletic group which is sister to those with two epurals, the Oxudercinae and Gobionellinae of Pezold. However, Sicydiinae, which have one epural, are closer to the Oxudercinae and Gobionellinae rather than to the Gobiinae. Since progressive reduction in epural number has been observed along this lineage, the sicydiines should be treated as a derived group within the groups with two epurals.  相似文献   

7.
The phylogeny of the subfamily Tephritinae (Diptera: Tephritidae) was reconstructed from mitochondrial 16S ribosomal RNA gene sequences using 53 species representing 11 currently recognized tribes of the Tephritinae and 10 outgroup species. The minimum evolution and Bayesian trees suggested the following phylogenetic relationships: (1) monophyly of the Tephritinae was strongly supported; (2) a sister group relationship between the Tephritinae and Plioreocepta was supported by the Bayesian tree; (3) the tribes Tephrellini, Myopitini, and Terelliini (excluding Neaspilota) were supported as monophyletic groups; (4) the non-monophyletic nature of the tribes Dithrycini, Eutretini, Noeetini, Tephritini, Cecidocharini, and Xyphosiini; and (5) recognition of 10 putative tribal groups, most of which were supported strongly by the statistical tests of the interior branches. Our results, therefore, convincingly suggest that an extensive rearrangement of the tribal classification of the Tephritinae is necessary. Since our sampling of taxa heavily relied on the current accepted classification, some lineages identified by the present study were severely under-sampled and other possible major lineages of the Tephritinae were probably not even represented in our dataset. We believe that our results provide baseline information for a more rigorous sampling of additional taxa representing all possible major lineages of the subfamily, which is essential for a comprehensive revision of the tephritine tribal classification.  相似文献   

8.
对重庆市26个南亚果实蝇Bactrocera(Zeugodacus)tau(Walker)种群线粒体16S rRNA基因进行测序,获得长约350bp片段的序列。对获得的序列分析表明,A,T,C,G平均含量分别为35·0%,41·3%,7·2%,16·5%,其中保守位点数342个,变异位点数5个,简约信息位点2个,自裔位点2个,所有碱基转换总数为136,替换总数为50。利用MEGA2·1软件重建系统发生树,发现其中21个南亚果实蝇种群未出现分化,另外有5个南亚果实蝇种群出现了分化,但遗传分化程度小。  相似文献   

9.
Bacterial phylogeny based on 16S and 23S rRNA sequence analysis   总被引:28,自引:0,他引:28  
Abstract: Molecular phylogeny increasingly supports the understanding of organismal relationships and provides the basis for the classification of microorganisms according to their natural affiliations. Comparative sequence analysis of ribosomal RNAs or the corresponding genes currently is the most widely used approach for the reconstruction of microbial phylogeny. The highly and less conserved primary and higher order structure elements of rRNAs document the history of microbial evolution and are informative for definite phylogenetic levels. An optimal alignment of the primary structures and a careful data selection are prerequisites for reliable phylogenetic conclusions. rRNA based phylogenetic trees can be reconstructed and the significance of their topologies evaluated by applying distance, maximum parsimony and maximum likelihood methods of phylogeny inference in comparison, and by fortuitous or directed resampling of the data set. Phylogenetic trees based on almost equivalent data sets of bacterial 23S and 16S rRNAs are in good agreement and their overall topologies are supported by alternative phylogenetic markers such as elongation factors and ATPase subunits. Besides their phylogenetic information content, the differently conserved primary structure regions of rRNAs provide target sites for specific hybridization probes which have been proven to be powerful tools for the identification of microbes on the basis of their phylogenetic relationships.  相似文献   

10.
蝗总科部分种类16S rDNA的分子系统发育关系   总被引:20,自引:0,他引:20  
将自测的我国直翅目蝗总科8科8个种和从互联网GenBank中检索到相关物种的线粒体基因组:16S rDNA序列片段进行同源性比较,计算核苷酸使用频率,并构建分子系统树。在获得的480bp的序列中。A T约占70.7%,G C为29.3%,颠换取代(transversion)的速率大于或接近转换取代(transition)的速率,其中188个核苷酸位点存在变异。研究结果表明:在直翅目蝗总科有差异的188bp中,属内种间的碱基序列差异仅为1.5%,科内属间为3.5%~3.6%,科间差异为4.8%~15.8%,亚目间差异达到15.2%~25.6%。分子系统树表明:科内的属和属内的种均优先聚在一起;蝗总科8科的起源关系为:锥头蝗科→瘤锥蝗科→癞蝗科→斑翅蝗科→剑角蝗科→网翅蝗科和槌角蝗科→斑腿蝗科;锥头蝗科与瘤锥蝗科关系较近,是蝗总科内最原始的类群;槌角蝗科和网翅蝗科互为姐妹群,与最进化的斑腿蝗科关系较近;蚤蝼科为独立的一支,最先分出,似为一个亚目,与现用的分类系统有明显差别;哈螽科(螽嘶总科)和蟋蟀科聚在一起为剑瓣亚目(Ensifera),蚱科和蝗总科的8科组成短瓣亚目(Caehfera),同现用的分类系统。  相似文献   

11.
研究测定了天牛科3亚科9种昆虫线粒体16S rDNA基因约500bp的序列,对序列的碱基组成和遗传距离进行分析。并基于16S rDNA基因序列数据,采用邻接法(NJ)和最大简约法(MP)分析天牛科3亚科分子系统发育关系。研究结果表明,2种方法得到的分子系统树其分支结果一致,可将内群分为2个分支,第1个分支包括沟胫天牛亚科和天牛亚科;第2个分支包括花天牛亚科。16SrDNA基因对天牛科亚科间系统发育的研究是有价值的。  相似文献   

12.
The genes of ribosomal RNA are the most popular and frequently used markers for bacterial phylogeny and reconstruction of insect-symbiont coevolution. In primary symbionts, such as Buchnera and Wigglesworthia, genome economization leads to the establishment of a single copy of these sequences. In phylogenetic studies, they provide sufficient information and yield phylogenetic trees congruent with host evolution. In contrast, other symbiotic lineages (e.g., the genus Arsenophonus) carry a higher number of rRNA copies in their genomes, which may have serious consequences for phylogenetic inference. In this study, we show that in Arsenophonus triatominarum the degree of heterogeneity can affect reconstruction of phylogenetic relationships and mask possible coevolution between the symbiont and its host. Phylogenetic arrangement of individual rRNA copies was used, together with a calculation of their divergence time, to demonstrate that the incongruent 16S rDNA trees and low nucleotide diversity in the secondary symbiont could be reconciled with the coevolutionary scenario.  相似文献   

13.
14.
Phylogenetic relationships of the Poaceae subfamily, Pooideae, were estimated from the sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. The entire ITS region of 25 species belonging to 19 genera representing seven tribes was directly sequenced from polymerase chain reaction (PCR)-amplified DNA fragments. The published sequence of rice, Oryza saliva, was used as the outgroup. Sequences of these taxa were analyzed with maximum parsimony (PAUP) and the neighbor-joining distance method (NJ). Among the tribes, the Stipeae, Meliceae and Brachypodieae, all with small chromosomes and a basic number more than x=7, diverged in succession. The Poeae, Aveneae, Bromeae and Triticeae, with large chromosomes and a basic number of x=7, form a monophyletic clade. The Poeae and Aveneae are the sister group of the Bromeae and Triticeae. On the ITS tree, the Brachypodieae is distantly related to the Triticeae and Bromeae, which differs from the phylogenies based on restriction-site variation of cpDNA and morphological characters. The phylogenetic relationships of the seven pooid tribes inferred from the ITS sequences are highly concordant with the cytogenetic evidence that the reduction in chromosome number and the increase in chromosome size evolved only once in the pooids and pre-dated the divergence of the Poeae, Aveneae, Bromeae and Triticeae.This paper reports factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitableThis paper is a cooperative investigation of USDA-ARS and the Utah Agricultural Experiment Station. Logan, Utah 84322. Journal Paper No. 4581  相似文献   

15.
The identification of members of the Onchidiidae is based on morphological characters; this is often time-consuming and can be inconclusive. In order to explore the species diversity of onchidiids in China, we provide a phylogeny constructed using partial sequences of two mitochondrial genes (16S rRNA and COI) and one nuclear ribosomal RNA gene (28S rRNA) from 32 samples comprising five genera. The topology, using both Bayesian and Maximum Likelihood inference methods, showed that the taxa clustered in two main groups of six species, one of which included Platevindex mortoni, Platevindex sp. and Onchidium ‘struma’; the other included Paraoncidium reevesii, Onchidella sp. and Peronia verruculata. It is clear that COI will be useful in discriminating onchidiid species-group taxa.  相似文献   

16.
The infraorder Thalassinidea is a group of cryptic marine burrowing decapods of which the higher taxonomy is often contentious. The present analysis attempts to reconstruct phylogenetic relationship among 12 of the 13 currently recognized families using partial nuclear 18S, 28S rDNA and mitochondrial 16S rDNA sequences. The infraorder is divided into two distinct clades, with the first clade consisting of Thalassinidae, Laomediidae, Axianassidae and Upogebiidae, and the second clade including Axiidae, Calocarididae, Eiconaxiidae, Callianassidae, Ctenochelidae, Micheleidae, Strahlaxiidae and Callianideidae. Within the first clade, the Upogebiidae is the basal family. The Axianassidae shows low affinity to other laomediid genera indicating that it is a valid family. The interfamilial relationships are less well resolved in the second clade. The Axiidae is paraphyletic with respect to Calocarididae and Eiconaxiidae. Thus, the status of these two latter families is not supported if the currently defined Axiidae is maintained. All three families appear to be basal in the thalassinidean clade. The Micheleidae is closely related to the Callianideidae and they form a sister group to the Strahlaxiidae. The monophyletic Callianassidae aligns with the Micheleidae + Callianideidae + Strahlaxiidae clade. The relationship among the Axiidae + Calocarididae + Eiconaxiidae clade, Callianassidae + Micheleidae + Callianideidae + Strahlaxiidae clade and the Ctenochelidae cannot be resolved which might be due to a rapid radiation of the three lineages. Our results do not support the generally used classification scheme of Thalassinidea and suggest that the infraorder might be divided into two superfamilies instead of three as suggested based on larval morphology, second pereiopod morphology in adults and gastric mill structure. The two superfamilies are Thalassinoidea (i.e. Thalassinidae, Laomediidae, Upogebiidae and Axianassidae) and Callianassoidea (i.e. Axioidea + Callianassoidea, as defined in Martin and Davis (2001) but excluding Laomediidae and Upogebiidae). It also appears that gill‐cleaning adaptations are important in thalassinidean evolution while the presence of linea thalassinica is a result of parallel evolution.  相似文献   

17.
有关对虾属(Penaeus)的设置及其相互亲缘关系一直是分类学争论的焦点,利用线粒体16S rRNA基因片段及COI基因片段序列分析的方法,以长臂虾科的脊尾白虾(Exopalaemon carinicauda)为外群,对对虾属的6亚属23种对虾进行了分子系统学研究。经ClustalX多重比对和MEGA4.0软件分析,得到种间序列的遗传距离并构建了最大简约(MP)系统树。结果表明:分子系统学数据支持Perez F等将对虾属的6个亚属提升为属级阶元的观点。囊对虾属的日本囊对虾(Marsupenaeus japonicus)和沟对虾属(Melicertus)的深沟对虾(Melicertus canaliculatus)之间的16S遗传距离只有0.007,而且COI遗传距离仅有0.065,比深沟对虾与同为沟对虾属的其他虾类遗传距离还小,说明囊对虾亚属(Marsupenaeus)和沟对虾亚属之间亲缘关系较近。另外美对虾亚属的褐美对虾(Farfantepenaeus aztec-us)和巴西美对虾(Farfantepenaeus brasiliensis)之间的16S rRNA基因序列遗传距离仅为0.012,但是与其他同亚属的虾类遗传距离相对较大,推测美对虾亚属(Farfantepenaeus)中的虾类根据亲缘关系远近和地理分布可以分为2大类群:墨西哥湾类群和南美洲类群。可以为对虾属的6个亚属的分类问题及演化提供一定的分子生物学依据。  相似文献   

18.
5S rRNAs from 12 species of free living and parasitic platyhelminthes were sequenced. In the phylogenetic analysis, attention was focused on the statistical estimates of the trees corresponding to existing phylogenetic hypotheses. The available 5S rRNA data agree well with widely accepted views on the relationships between the Acoela, Polycladida, Tricladida, and Neorhabdocoela; our analysis of the published 18S rRNA sequences also demonstrated good correspondence between these views and molecular data. With available 5S rRNA data the hypothesis that the dalyellioid turbellarians is the sister group of the Neodermata is less convincing than the hypotheses proposing the Neodermata as the sister group of the Neorhabdocoela, or of the Seriata, or of the branch uniting them. A relatively low rate of base replacement in parasitic flatworms, probably, accounts for the uncertain position of the Neodermata, while a relatively high rate in planarians may explain a relatively too early divergence of the Tricladida in several published phylogenetic trees constructed from various rRNA data.  相似文献   

19.
A 390 bp region of the 16S rDNA gene was sequenced from six species ofrhinonyssid mites (Tinaminyssus columbae, T. minisetosum, Sternostomaturdi, S. sternahirundo, S. fulicae and Ptilonyssus euroturdi) andtwo subspecies (Tinaminyssus melloi melloi andTinaminyssus melloi streptopeliae) to examine the level ofsequence variation and the taxonomic levels to show utility in phylogenyestimation. Furthemore, two different geographic locations of T. m.melloi and T. m. streptopeliae were analyzed todetect variation between populations. Molecular data revealed the existence oftwo distinct groups in the genus Tinaminyssus parasitic oncolumbiform birds. These results are in agreement with those reported by someauthors using morphological characters. Sternostoma turdi parasitizing aerial birds appeared to be phylogenetically separated from otherspecies of this genus isolated from aquatic birds. Moreover, our studyaddressesthe validity of the subspecies status of T. melloistreptopeliae. This region of the mitochondrial 16S rDNA gene is auseful marker for inferring phylogenetic relationships among closely relatedrhinonyssid species, but not for more distantly related taxa.  相似文献   

20.
Herbivorous insects are abundant and diverse and insect-host plant associations tend to be specialized and evolutionarily conserved. Some authors suggested that generalist insect lineages tend to become specialists, with host specialization leading to an evolutionary dead-end for the parasite species. In this paper, we have examined this tendency using a phylogenetic tree of Tomoplagia (Diptera: Tephritidae), a parasite of asteracean plants. We have tested the trend towards specialization in different hierarchical degrees of host specialization. The topology of the tree, the inference of ancestral hosts, and the lack of directional evolution indicated that specialization does not correspond to a phylogenetic dead-end. Although most Tomoplagia species are restricted to a single host genus, specialization does not seem to limit further host range evolution. This work emphasizes the advantages of the use of different levels of specialization and the inclusion of occasional hosts to establish a more detailed scenario for the evolution of this kind of ecological association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号