首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here our differential scanning calorimetry measurements investigating the thermotropic phase behaviour of binary dipalmitoylphosphatidylcholine (DPPC)/sterol mixtures containing two saturated sterols with different ring configurations (5β-H and either 3α-OH or 3β-OH). These measurements differ in the proportions of sharp and broad components in the heating endotherms, representing the melting of the sterol-poor and sterol-rich lipid micro-domains of the DPPC bilayer, respectively. Our results suggest that the 5,10-cis ring configuration of both saturated sterols and the ring A conformations have the greatest influence on DPPC bilayer properties, most likely by inducing small increases in the mean area/molecule as compared to cholesterol. However, the C3-OH orientation also influences sterol miscibility, likely due to variations in the strength and number of interfacial H-bonds with changes in molecular area, which in turn probably reflect the depth of the sterol in the DPPC bilayer. This influence of C3-OH orientation is significantly greater than was observed in our earlier study of cholesterol/- and epicholesterol/DPPC mixtures. Overall, our results show that both saturated and unsaturated 3α-ols are less miscible than the corresponding 3β-ols, but that the presence of a Δ5 double bond can improve the sterol miscibility in the DPPC bilayer at high sterol concentrations.  相似文献   

2.
Oriented multilayers of 1-myristoyl-2(1-13C)-myristoyl-sn-glycero-3-phosphatidylcholine (2[1-13C]DMPC) and 1-palmitoyl-2(1-13C)-palmitoyl-sn-glycero-3-phosphatidylcholine (2[1-13C]DPPC) were investigated by use of attenuated total reflection infrared spectroscopy with polarized light. Experiments were performed with the aim to determine the orientation of the two ester groups in these phospholipids in the solid state and in the hydrated state at temperatures below and above the respective gel to liquid-crystalline phase transitions. Substitution of the naturally occurring 12C carbonyl carbon atom by 13C in the ester group of the sn-2 chain of DMPC and DPPC shifts the infrared absorption of the carbonyl double bond stretching vibration to lower frequency. This results in two well-resolved ester C=O bands which can be assigned unequivocally to the sn-1 and sn-2 chains as they are separated by more than 40 cm-1. The two ester CO-O single bond stretching vibrations of the molecular fragments-CH2CO-OC-are also affected and the corresponding infrared absorption band shifts by 20 cm-1 on 13C-labeling of the carbonyl carbon atom. From the dichroic ratios of the individual ester bands in 2(1-13C)DMPC and 2(1-13C)DPPC we were able to demonstrate that the sn-1 and sn-2 ester C=O groups are similarly oriented with respect to the bilayer plane, with an angle greater than or equal to 60 degrees relative to the bilayer normal. The two CO-O single bonds on the other hand have very different orientations. The CH2CO-OC fragment of the sn-1 chain is oriented along the direction of the all-trans methylene chain, whereas the same molecular segment of the sn-2 carbon chain is directed toward the bilayer plane. This orientation of the ester groups is retained in the liquid-crystalline phase. The tilt angle of the hydrocarbon all-trans chains, relative to the membrane normal, is 25 degrees in the solid state of DMPC and DPPC multibilayers. In the hydrated gel state this angle varies between 26 degrees and 30 degrees, depending on temperature. Neither the orientation of the phosphate group, nor that of the choline group varies significantly in the different physical states of these phospholipids.  相似文献   

3.
Phosphatidylserine (PS) extracted from pig brain and synthetic dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were used to make DPPC/DMPC and DPPC/PS large unilamellar liposomes with a diameter of approximately 1 microm. Chlorpromazine-HCl (CPZ), an amphipathic cationic psychotropic drug of the phenothiazine group, is known to partition into lipid bilayer membranes of liposomes with partition coefficients depending on the acyl chain length and to alter the bilayer structure in a manner depending on the phospholipid headgroups. The effects of adding CPZ to these membranes were studied by differential scanning calorimetry and proton cross polarization solid state magic angle spinning (13)C-nuclear magnetic resonance spectroscopy (CP-MAS-(13)C-NMR). CP-MAS-(13)C-NMR spectra of the DPPC (60%)/DMPC (40%) and the DPPC (54%)/DMPC (36%)/CPZ (10%) liposomes, show that CPZ has low or no interaction with the phospholipids of this neutral and densely packed bilayer. Conversely, the DPPC (54%)/PS (36%)/CPZ (10%) bilayer at 25 degrees C demonstrates interaction of CPZ with the phospholipid headgroups (PS). This CPZ interaction causes about 30% of the acyl chains to enter the gauche conformation with low or no CPZ interdigitation among the acyl chains at this temperature (25 degrees C). The DPPC (54%)/PS (36%)/CPZ (10%) bilayer at a sample temperature of 37 degrees C (T(C)=31.2 degrees C), shows CPZ interdigitation among the phospholipids as deduced from the finding that approximately 30% of the phospholipid acyl chains carbon resonances shift low-field by 5-15 ppm.  相似文献   

4.
The well-known reduction in the permeability properties of liposomes of dimyristoylphosphatidylcholine (DMPC) by sterols has also been demonstrated for its sulfonium analog (DMPSC) in which the N+(CH3)3 group of choline is replaced by S+(CH3)2. We have now compared the effects of 25 mol% 24-methylenecholesterol and cholesterol on the initial rates of urea permeation into dipalmitoyl-PC (DPPC) and dipalmitoyl-PSC (DPPSC) liposomes above the gel-to-liquid-crystalline phase transition temperature and found a greater reduction with 24-methylenecholesterol/DPPSC than with cholesterol/DPPSC liposomes but little difference between the two sterols in DPPC liposomes. Fluorescence polarization studies, using diphenylhexatriene as a probe, show that polarization (P) values are considerably higher in DMPSC liposomes containing 20 and 30 mol% 24-methylenecholesterol than in DMPC liposomes containing 20 and 30 mol% cholesterol. Higher P values were also obtained in DMPSC liposomes containing other 24-alkyl-substituted sterols (beta-sitosterol, ergosterol and campesterol) than in DMPC liposomes containing the same sterols. Reduced permeability rates in PSC liposomes containing 24-alkyl-substituted sterols are correlated with higher polarization values, reflecting an increased degree of order and/or motion in these liposomes compared with liposomes from the corresponding PC. These results suggest that alkyl substitution at C-24 of the sterol molecule results in tighter interactions with the sulfonium analog of PC than with PC.  相似文献   

5.
Both wide-angle and lamellar x-ray diffraction data are interpreted in terms of a difference in hydrocarbon chain tilt between fully hydrated dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE). Although the hydrocarbon chains of multilayers of DPPC tilt ty approximately 30 degrees relative to the normal to the plane of the bilayer, as previously reported by others, the hydrocarbon chains of DPPE appear to be oriented approximately normal to the plane of the bilayer. It is found that the chain tilt in DPPC bilayers can be reduced by either: (a) adding an n-alkane to the bilayer interiors or (b) adding lanthanum ions to the fluid layers between bilayers. A molecular packing model is presented which accounts for these data. According to this model, DPPC chains tilt because of the size and conformation of the PC polar head group.  相似文献   

6.
Differential scanning calorimetry and x-ray diffraction have been utilized to investigate the interaction of N-stearoylsphingomyelin (C18:0-SM) with cholesterol and dipalmitoylphosphatidylcholine (DPPC). Fully hydrated C18:0-SM forms bilayers that undergo a chain-melting (gel -->liquid-crystalline) transition at 45 degrees C, delta H = 6.7 kcal/mol. Addition of cholesterol results in a progressive decrease in the enthalpy of the transition at 45 degrees C and the appearance of a broad transition centered at 46.3 degrees C; this latter transition progressively broadens and is not detectable at cholesterol contents of >40 mol%. X-ray diffraction and electron density profiles indicate that bilayers of C18:0-SM/cholesterol (50 mol%) are essentially identical at 22 degrees C and 58 degrees C in terms of bilayer periodicity (d = 63-64 A), bilayer thickness (d rho-p = 46-47 A), and lateral molecular packing (wide-angle reflection, 1/4.8 A-(1)). These data show that cholesterol inserts into C18:0-SM bilayers, progressively removing the chain-melting transition and altering the bilayer structural characteristics. In contrast, DPPC has relatively minor effects on the structure and thermotropic properties of C18:0-SM. DPPC and C18:0-SM exhibit complete miscibility in both the gel and liquid-crystalline bilayer phases, but the pre-transition exhibited by DPPC is eliminated at >30 mol% C18:0-SM. The bilayer periodicity in both the gel and liquid-crystalline phases decreases significantly at high DPPC contents, probably reflecting differences in hydration and/or chain tilt (gel phase) of C18:0-SM and DPPC.  相似文献   

7.
Fourier Transform Infra-red and Raman Spectroscopies indicate that 7 alpha-hydroxycholesterol and 7-ketocholesterol have a diminished capacity to condense (increase the packing order of) fluid-state dipalmitoylphosphatidylcholine (DPPC) acyl chains when compared with the effects of cholesterol and the other oxidized sterols studied. DPPC head groups were also more ordered by 7-ketocholesterol over the temperature range 10 degrees - 70 degrees C. Primary effects of these sterols appear to be associated with the hydrophillic regions of the DPPC bilayer, although packing arrangements with acyl chains are also involved. Phosphate and acyl chain ester groups were observed to possess a packing order which was invariant which indicates that these may be the target groups in the interaction with 7-ketocholesterol. A surprising observation was the synergistic amplification of the effects of 7-ketocholesterol by the presence of cholesterol in the DPPC bilayer.  相似文献   

8.
J Katsaras  D S Yang    R M Epand 《Biophysical journal》1992,63(4):1170-1175
X-ray diffraction has been applied to determine the various tilt angles and directions (if any) which can be assumed by oriented gel phase multilayers of dipalmitoyl phosphatidylcholine (DPPC) as a function of hydration. We report for the first time that oriented DPPC multilayers with a repeat spacing (d-spacing) of 55.2A at 25 degrees C and 0% relative humidity (RH) have hydrocarbon chains tilted at an angle theta of 21.5 degrees with respect to the bilayer normal. In addition, the chains are tilted along one of the bisectors (omega = 0 degrees) of the hexagonal lattice (8 wide-angle maxima, 2 unique), a phase not previously reported in DPPC studies. At 100% RH, the chain tilt angle and d-spacing increased to approximately 29.0 degrees and 58.9A, respectively. Since at 100% RH only 4 wide-angle maxima are observed, we analyze the data on the assumption that the hydrocarbon chains may rotate independently of the hexagonal lattice (omega = 0-30 degrees), at a fixed chain tilt angle theta (Stamatoff, J.B., et al. 1979. Biophys. J. 25:253-262). The largest observed angle phi made by the wide-angle maxima with the equator is 29.5 degrees corresponding to a theta of approximately 32.6 degrees (omega avg. = 24 degrees) and the sample having a d-spacing of 64.0 A (excess water condition). Finally, theta remains relatively constant (approximately 21.5 degrees) up to a RH of approximately 45% and a d-spacing of 57.8A, after which, with increases in RH, theta increases to a maximum of 32.6 degrees.  相似文献   

9.
Lipid bilayer membranes composed of DOPC, DPPC, and a series of sterols demix into coexisting liquid phases below a miscibility transition temperature. We use fluorescence microscopy to directly observe phase transitions in vesicles of 1:1:1 DOPC/DPPC/sterol within giant unilamellar vesicles. We show that vesicles containing the "promoter" sterols cholesterol, ergosterol, 25-hydroxycholesterol, epicholesterol, or dihydrocholesterol demix into coexisting liquid phases as temperature is lowered through the miscibility transition. In contrast, vesicles containing the "inhibitor" sterols androstenolone, coprostanol, cholestenone, or cholestane form coexisting gel (solid) and liquid phases. Vesicles containing lanosterol, a sterol found in the cholesterol and ergosterol synthesis pathways, do not exhibit coexisting phases over a wide range of temperatures and compositions. Although more detailed phase diagrams and precise distinctions between gel and liquid phases are required to fully define the phase behavior of these sterols in vesicles, we find that our classifications of promoter and inhibitor sterols are consistent with previous designations based on fluorescence quenching and detergent resistance. We find no trend in the liquid-liquid or gel-liquid transition temperatures of membranes with promoter or inhibitor sterols and measure the surface fraction of coexisting phases. We find that the vesicle phase behavior is related to the structure of the sterols. Promoter sterols have flat, fused rings, a hydroxyl headgroup, an alkyl tail, and a small molecular area, which are all attributes of "membrane active" sterols.  相似文献   

10.
Endress E  Heller H  Casalta H  Brown MF  Bayerl TM 《Biochemistry》2002,41(43):13078-13086
Quasi-elastic neutron scattering (QENS) was employed to study the molecular dynamics of three structurally related sterols, namely, cholesterol, lanosterol, and ergosterol. Oriented bilayers of dipalmitoylphosphatidylcholine (DPPC) were investigated at 40 mol % sterol content and at three temperatures (20, 36, and 50 degrees C) for two energy resolutions. Data analysis was concentrated on a direct comparison of the out-of-plane and the in-plane high-frequency motions of the three sterols in terms of their rates and amplitudes. The (spatially restricted) diffusive motion of the three sterols in the two directions was characterized by diffusion constants in the range of (5-30) x 10(-12) x m(2) x s(-1), with a significantly faster rate of diffusion along the membrane normal, resulting in a diffusional anisotropy, D(a). At low temperature (20 degrees C), cholesterol showed the highest value (D(a) = 4.5), while lanosterol gave the lowest one (D(a) = 2.0). At high temperature (50 degrees C), ergosterol diffusion had the highest diffusion anisotropy (D(a) = 2.0) compared to lanosterol (D(a) = 1.8) and cholesterol (D(a) = 1.6). Most interestingly, cholesterol showed at all three temperatures an amplitude of its out-of-plane-motion of 1.0-1.1 nm, more than a factor of 3 higher than measured for the other two sterols. This finding suggests that the short alkyl chain of the cholesterol molecule may cross at high frequency the bilayer midplane, while the other two sterols remain confined within the geometrical limits of each monolayer leaflet. The results provide an example of how slight structural alterations of sterols can affect their molecular dynamics in bilayers, which in turn may be relevant to the membrane micromechanical properties.  相似文献   

11.
SP-C, a pulmonary surfactant-specific protein, aids the spreading of the main surfactant phospholipid L-alpha-dipalmitoylphosphatidylcholine (DPPC) across air/water interfaces, a process that has possible implications for in vivo function. To understand the molecular mechanism of this process, we have used external infrared reflection-absorption spectroscopy (IRRAS) to determine DPPC acyl chain conformation and orientation as well as SP-C secondary structure and helix tilt angle in mixed DPPC/SP-C monolayers in situ at the air/water interface. The SP-C helix tilt angle changed from approximately 24 degrees to the interface normal in lipid bilayers to approximately 70 degrees in the mixed monolayer films, whereas the acyl chain tilt angle of DPPC decreased from approximately 26 degrees in pure lipid monolayers (comparable to bilayers) to approximately 10 degrees in the mixed monolayer films. The protein acts as a "hydrophobic lever" by maximizing its interactions with the lipid acyl chains while simultaneously permitting the lipids to remain conformationally ordered. In addition to providing a reasonable molecular mechanism for protein-aided spreading of ordered lipids, these measurements constitute the first quantitative determination of SP-C orientation in Langmuir films, a paradigm widely used to simulate processes at the air/alveolar interface.  相似文献   

12.
13.
We previously reported that 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) forms an interdigitated gel phase in the presence of 1-palmitoyl-sn-glycero-3-phosphocholine (16:0LPC) at concentrations below 30 mol%. In the present investigation, fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), X-ray diffraction, and differential scanning calorimetry (DSC) were used to investigate the effect of cholesterol on the phase behavior of 16:0LPC/DPPC binary mixtures. At 25 degrees C, 30 mol% 16:0LPC significantly decreases the DPH fluorescence intensity during the transition of DPPC from the L(beta') phase to the L(betaI) phase. However, the addition of cholesterol to 16:0LPC/DPPC mixtures results in a substantial increase in fluorescence intensity. The changes in DPH fluorescence intensity reflect the probe's redistribution from an orientation parallel to the acyl chain to the center of the bilayer, suggesting a bilayer structure transition from interdigitation to noninterdigitation. The normal repeat period of small angle X-ray diffraction patterns can be restored and a reflection appears at 0.42 nm with a broad shoulder around 0.41 nm in wide angle X-ray diffraction patterns when 10 mol% cholesterol is incorporated into 30 mol% 16:0LPC/DPPC vesicles, indicating that the mixtures are in the gel phase (L(beta')). Moreover, DSC results demonstrate that 10 mol% cholesterol is sufficient to significantly decrease the main enthalpy, cooperativity and lipid chain melting of 30 mol% 16:0LPC/DPPC binary mixtures, which are L(betaI), indicating that the transition of the interdigitated phase is more sensitive to cholesterol than that of the noninterdigitated phase. Our data imply that the interdigitated gel phase induced by 16:0LPC is prevented in the presence of 10 mol% cholesterol, but unlike ethanol, an increasing concentration of 16:0LPC is not able to restore the interdigitation structure of the lipid mixtures.  相似文献   

14.
Quasielastic neutron scattering (QENS) at two energy resolutions (1 and 14 microeV) was employed to study high-frequency cholesterol motion in the liquid ordered phase (lo-phase) of oriented multilayers of dipalmitoylphosphatidylcholine at three temperatures: T = 20 degrees C, T = 36 degrees C, and T = 50 degrees C. We studied two orientations of the bilayer stack with respect to the incident neutron beam. This and the two energy resolutions for each orientation allowed us to determine the cholesterol dynamics parallel to the normal of the membrane stack and in the plane of the membrane separately at two different time scales in the GHz range. We find a surprisingly high, model-independent motional anisotropy of cholesterol within the bilayer. The data analysis using explicit models of molecular motion suggests a superposition of two motions of cholesterol: an out-of-plane diffusion of the molecule parallel to the bilayer normal combined with a locally confined motion within the bilayer plane. The rather high amplitude of the out-of-plane diffusion observed at higher temperatures (T >/= 36 degrees C) strongly suggests that cholesterol can move between the opposite leaflets of the bilayer while it remains predominantly confined within its host monolayer at lower temperatures (T = 20 degrees C). The locally confined in-plane cholesterol motion is dominated by discrete, large-angle rotational jumps of the steroid body rather than a quasicontinous rotational diffusion by small angle jumps. We observe a significant increase of the rotational jump rate between T = 20 degrees C and T = 36 degrees C, whereas a further temperature increase to T = 50 degrees C leaves this rate essentially unchanged.  相似文献   

15.
The activity (Po) of large-conductance voltage/Ca(2+)-gated K(+) (BK) channels is blunted by cholesterol levels within the range found in natural membranes. We probed BK channel-forming α (cbv1) subunits in phospholipid bilayers with cholesterol and related monohydroxysterols and performed computational dynamics to pinpoint the structural requirements for monohydroxysterols to reduce BK Po and obtain insights into cholesterol's mechanism of action. Cholesterol, cholestanol, and coprostanol reduced Po by shortening mean open and lengthening mean closed times, whereas epicholesterol, epicholestanol, epicoprostanol, and cholesterol trisnorcholenic acid were ineffective. Thus, channel inhibition by monohydroxysterols requires the β configuration of the C3 hydroxyl and is favored by the hydrophobic nature of the side chain, while having lax requirements on the sterol A/B ring fusion. Destabilization of BK channel open state(s) has been previously interpreted as reflecting increased bilayer lateral stress by cholesterol. Lateral stress is controlled by the sterol molecular area and lipid monolayer lateral tension, the latter being related to the sterol ability to adopt a planar conformation in lipid media. However, we found that the differential efficacies of monohydroxysterols to reduce Po (cholesterol≥coprostanol≥cholestanol>epicholesterol) did not follow molecular area rank (coprostanol>epicholesterol>cholesterol>cholestanol). In addition, computationally predicted energies for cholesterol (effective BK inhibitor) and epicholesterol (ineffective) to adopt a planar conformation were similar. Finally, cholesterol and coprostanol reduced Po, yet these sterols have opposite effects on tight lipid packing and, likely, on lateral stress. Collectively, these findings suggest that an increase in bilayer lateral stress is unlikely to underlie the differential ability of cholesterol and related steroids to inhibit BK channels. Remarkably, ent-cholesterol (cholesterol mirror image) failed to reduce Po, indicating that cholesterol efficacy requires sterol stereospecific recognition by a protein surface. The BK channel phenotype resembled that of α homotetramers. Thus, we hypothesize that a cholesterol-recognizing protein surface resides at the BK α subunit itself.  相似文献   

16.
Massey JB  Pownall HJ 《Biochemistry》2005,44(30):10423-10433
7-Ketocholesterol is an oxidized derivative of cholesterol with numerous physiological effects. In model membranes, 7-ketocholesterol and cholesterol were compared by physical measures of bilayer order and polarity, formation of detergent resistant domains (DRM), phase separation, and membrane microsolubilization by apolipoprotein A-I. In binary mixtures of a saturated phosphatidylcholine (PC), dipalmitoyl-PC (DPPC), and cholesterol or 7-ketocholesterol, the sterols modulate bilayer order and polarity and induce DRM formation to a similar extent. Cholesterol induces formation of ordered lipid domains (rafts) in tertiary mixtures with dioleoyl-PC (DOPC) and DPPC, or DOPC and sphingomyelin (SM). In tertiary mixtures, cholesterol increased lipid order and reduces bilayer polarity more than 7-ketocholesterol. This effect was more pronounced when the mixtures were in a miscible liquid-disordered (L(d)) phase. Substitution of 7-ketocholesterol for cholesterol dramatically reduced the extent of DRM formation in DOPC/DPPC and DOPC/SM bilayers and ordered lipid phase separation in mixtures of a spin-labeled PC with DPPC and with SM. Compared to cholesterol, 7-ketocholesterol decreased the rate for the microsolubilization of dimyristoyl-PC multilamellar vesicles by apolipoprotein A-I. The membrane effects of 7-ketocholesterol were dependent on the phospholipid matrix. In L(d) phase phospholipids, a model for 7-ketocholesterol indicates that the proximity of the 7-keto and 3beta-OH groups puts both polar moieties at the lipid-water interface to tilt the sterol nucleus to the plane of the bilayer. 7-Ketocholesterol was less effective in forming ordered lipid domains, in decreasing the level of bilayer hydration, and in forming phase boundary bilayer defects. Compared to cholesterol, 7-ketocholesterol can differentially modulate membrane properties involved in protein-membrane association and function.  相似文献   

17.
Unilamellar dioleoylphosphatidylcholine (DOPC) liposomes (250 microM) incorporated 2 mol% of [3H]pristane at 37 degrees C after addition of 50 microM pristane solubilized with beta-cyclodextrin. Conventional solubilization in dimethyl sulphoxide resulted in much lower uptake. Premixing of perdeuterated pristane with DOPC and dipalmitoylphosphatidylcholine (DPPC) prior to the formation of multilamellar liposomes resulted in homogeneous incorporation of up to 5 mol% pristane at 22 degrees C and 50 degrees C, respectively, as observed by 2H-NMR. Lipid order parameters measured by 31P and 2H-NMR remained unchanged after pristane uptake. Pristane induced the transformation of part of the dioleoylphosphatidylethanolamine (DOPE)/DOPC (3:1, mol/mol) liquid crystalline lamellar phase into an inverse hexagonal phase. 5 mol% pristane in DPPC bilayers decreased the midpoint of the main phase transition temperature of DPPC from 41.5 degrees C to 40.9 degrees C. Upon cooling in the temperature range from 41 degrees C to 36 degrees C, pristane was either displaced from the DPPC bilayer or the mode of incorporation changed. These results may aid in defining the mechanisms whereby pristane, an isoprenoid C19-isoalkane, induces plasmacytomagenesis in mice.  相似文献   

18.
The effects of pulsed 130 GHz radiations on lipid membrane permeability were investigated by using cationic liposomes containing dipalmitoyl phosphatidylcholine (DPPC), cholesterol, and stearylamine. Carbonic anhydrase (CA) was loaded inside the liposomes and the substrate p-nitrophenyl acetate (p-NPA) added in the bulk aqueous phase. Upon permeation across the lipid bilayer, the trapped CA catalyzes the conversion of the p-NPA molecules into products. Because the self-diffusion rate of p-NPA across intact liposomes is very low the CA reaction rate, expressed as Delta A/min, is used to track membrane permeability changes. The effect of 130 GHz radiation pulse-modulated at low frequencies of 5, 7, or 10 Hz, and at time-averaged incident intensity (I(AV)) up to 17 mW/cm(2) was studied at room temperature (22 degrees C), below the phase transition temperature of DPPC liposomes. At all the tested values of I(AV) a significant enhancement of the enzyme reaction rate in CA-loaded liposomes occurred when the pulse repetition rate was 7 Hz. Typically, an increase from Delta A/min = 0.0026 +/- 0.0010 (n = 11) to Delta A/min = 0.0045 +/- 0.0013 (n = 12) (P < 0.0005) resulted at I(AV) = 7.7 mW/cm(2). The effect of 130 GHz pulse-modulated at 7 Hz was also observed on cationic liposomes formed with palmitoyloleoyl phosphatidylcholine (POPC), at room temperature (22 degrees C), above the phase transition temperature of POPC liposomes.  相似文献   

19.
胆固醇对脂双层结构影响的SAXS和STM研究   总被引:7,自引:0,他引:7  
用小角X射线散射(SAXS)和扫描隧道显微镜(STM)技术分别研究了模拟生物膜脂质体的结构以及胆固醇对生物膜双层结构的影响。结果表明,在扫描隧道显微镜照片中,磷脂分子在石墨表面形成规则的二维点状排列图像;磷脂胆固醇脂质体在石墨表面形成规则的二维波纹状排列图像。用小角X射线散射研究结果表明,DPPC脂质体是片层相结构,DPPC+Chol脂质体是复相片层结构,DPPE+Chol脂质体是片层立方相结构,DPPC+DPPE+Chol脂质体是立方六角形相结构。  相似文献   

20.
The structures of DMPC and DPPC bilayers in unilamellar liposomes, in the presence of 33.3 mol% cholesterol or the plant sterol β-sitosterol, have been studied by small-angle neutron scattering. The bilayer thickness d L increases in a similar way for both sterols. The repeat distance in multilamellar liposomes, as determined by small-angle X-ray diffraction, is larger in the presence of β-sitosterol than in the presence of cholesterol. We observe that each sterol modifies the interlamellar water layer differently, cholesterol reducing its thickness more efficiently than β-sitosterol, and conclude that cholesterol suppresses bilayer undulations more effectively than β-sitosterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号