首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Achondroplasia is the most common genetic form of human dwarfism, for which there is presently no effective therapy. C-type natriuretic peptide (CNP) is a newly identified molecule that regulates endochondral bone growth through GC-B, a subtype of particulate guanylyl cyclase. Here we show that targeted overexpression of CNP in chondrocytes counteracts dwarfism in a mouse model of achondroplasia with activated fibroblast growth factor receptor 3 (FGFR-3) in the cartilage. CNP prevented the shortening of achondroplastic bones by correcting the decreased extracellular matrix synthesis in the growth plate through inhibition of the MAPK pathway of FGF signaling. CNP had no effect on the STAT-1 pathway of FGF signaling that mediates the decreased proliferation and the delayed differentiation of achondroplastic chondrocytes. These results demonstrate that activation of the CNP-GC-B system in endochondral bone formation constitutes a new therapeutic strategy for human achondroplasia.  相似文献   

3.
Mitochondria prepared from the first growth of cells (fibroblasts) from skin biopsies from homozygous (but not heterozygous) achondroplastic human subjects were unable to carry out oxidative phosphorylation. However, successive crops of cells gained the ability to phosphorylate with normal P:O ratios with pyruvate-malate and succinate as substrates. Concentrations of cytochromes a + a3 were markedly and significantly lower in homogenates of homozygous achondroplastic tissue culture cells than in homogenates of normal cells. Levels of cytochromes a + a3 in the heterozygous achondroplastic cells were intermediate between the levels in normal cells and the homozygous achondroplastic cells. Activities of the mitochondrial oxidative systems (NADH, succinic and cytochrome oxidases) were not significantly lower in the achondroplastic cell preparations than in normal cell preparations under standard assay conditions (saturation levels of oxygen).  相似文献   

4.
We report here a comparative study of the development and behavior of chondrocytes isolated from normal growth plate tissue, tibial dyschondroplasic lesions, and from articular cartilage. The objective of these studies was to determine whether the properties exhibited by chondrocytes in dysplasic lesions or in articular cartilage were due to their cellular phenotype, their environment, or both. We had previously analyzed the electrolytes and amino acid levels in the extracellular fluid of avian growth plate chondrocytes. Using these data, we constructed a culture medium (DATP5) in which growth plate cells essentially recapitulate their normal behavior in vivo. Here, we used DATP5 to examine the behavior of chondrocytes isolated from lesions of tibial dyschondroplasia (TD). We found that once isolated from lesion and grown in this supportive medium, dysplasic chondrocytes behaved essentially like normal growth plate cells. These findings suggest that the cause of TD is local factors operating in vivo to prevent these cells from developing normally. With respect to articular chondrocytes, our data indicate that they more closely retain normal protein and proteoglycan synthesis when grown in serum-free media. These cells readily induced mineral formation in vitro, both in the presence and absence of serum. However, in serum-containing media, mineralization was significantly enhanced when the cells were exposed to retinoic acid (RA) or osteogenic protein-1 (OP-1). Our studies support previous work indicating the presence of autocrine factors produced by articular chondrocytes in vivo that prevent mineralization and preserve matrix integrity. The lack of inhibitory factors and the presence of supporting factors are likely reasons for the induction of mineralization by articular chondrocytes in vitro.  相似文献   

5.
Achondroplasia, the most common type of dwarfism, is characterized by a mutation in the fibroblast growth factor receptor 3 (FGFR3). Achondroplasia is an orphan pathology with no pharmacological treatment so far. However, the possibility of using the dinucleotide diadenosine tetraphosphate (Ap4A) with therapeutic purposes in achondroplasia has been previously suggested. The pathogenesis involves the constitutive activation of FGFR3, resulting in altered biochemical and physiological processes in chondrocytes. Some of these altered processes can be influenced by changes in cell volume and ionic currents. In this study, the action of mutant FGFR3 on chondrocyte size and chloride flux in achondroplastic chondrocytes was investigated as well as the effect of the Ap4A on these processes triggered by mutant FGFR3. Stimulation with the fibroblast growth factor 9 (FGF9), the preferred ligand for FGFR3, induced an enlarged achondroplastic chondrocyte size and an increase in the intracellular chloride concentration, suggesting the blockade of chloride efflux. Treatment with the Ap4A reversed the morphological changes triggered by FGF9 and restored the chloride efflux. These data provide further evidence for the therapeutic potential of this dinucleotide in achondroplasia treatment.  相似文献   

6.
In developing murine growth plates, chondrocytes near the articular surface (periarticular chondrocytes) proliferate, differentiate into flat column-forming proliferating cells (columnar chondrocytes), stop dividing and finally differentiate into hypertrophic cells. Indian hedgehog (Ihh), which is predominantly expressed in prehypertrophic cells, stimulates expression of parathyroid hormone (PTH)-related peptide (PTHrP) which negatively regulates terminal chondrocyte differentiation through the PTH/PTHrP receptor (PPR). However, the roles of PTHrP and Ihh in regulating earlier steps in chondrocyte differentiation are unclear. We present novel mouse models with PPR abnormalities that help clarify these roles. In mice with chondrocyte-specific PPR ablation and mice with reduced PPR expression, chondrocyte differentiation was accelerated not only at the terminal step but also at an earlier step: periarticular to columnar differentiation. In these models, upregulation of Ihh action in the periarticular region was also observed. In the third model in which the PPR was disrupted in about 30% of columnar chondrocytes, Ihh action in the periarticular chondrocytes was upregulated because of ectopically differentiated hypertrophic chondrocytes that had lost PPR. Acceleration of periarticular to columnar differentiation was also noted in this mouse, while most of periarticular chondrocytes retained PPR signaling. These data suggest that Ihh positively controls differentiation of periarticular chondrocytes independently of PTHrP. Thus, chondrocyte differentiation is controlled at multiple steps by PTHrP and Ihh through the mutual regulation of their activities.  相似文献   

7.
The achondroplastic mouse is a spontaneous mutant characterized by disproportionate dwarfism with short limbs and tail due to disturbed chondrogenesis during endochondral ossification. These abnormal phenotypes are controlled by an autosomal recessive gene (cn). In this study, linkage analysis using 115 affected mice of F2 progeny mapped the cn locus on an approximately 0.8-cM region of chromosome 4, and natriuretic peptide receptor 2 (Npr2) gene was identified as the most potent candidate for the cn mutant in this region. This gene encodes a receptor for C-type natriuretic peptide (CNP) that positively regulates longitudinal bone growth by producing cGMP in response to CNP binding to the extracellular domain. Sequence analyses of the Npr2 gene in cn/cn mice revealed a T to G transversion leading to the amino acid substitution of highly conserved Leu with Arg in the guanylyl cyclase domain. In cultured chondrocytes of cn/cn mice, stimulus with CNP did not significantly increase intracellular cGMP concentration, whereas it increased in +/+ mice. Transfection of the mutant Npr2 gene into COS-7 cells also showed similar results, indicating that the missense mutation of the Npr2 gene in cn/cn mice resulted in disruption of the guanylyl cyclase activity of the receptor. We therefore concluded that the dwarf phenotype of cn/cn mouse is caused by a loss-of-function mutation of the Npr2 gene, and cn/cn mouse will be a useful model to further study the molecular mechanism regulating endochondral ossification by CNP/natriuretic peptide receptor B signal.  相似文献   

8.
Mitochondria prepared from tissue culture cells (skin fibroblasts) from normal subjects and subjects with homozygous achondroplasia were studied to determine the concentrations of cytochromes a and a3 in the preparations. Cytochrome a3 was markedly decreased (80%) in the achondroplastic preparations with cytochrome a present in normal amounts. Determination of total heme a (as the pyridine hemochromogen) in the normal and achondroplastic preparations demonstrated that the observed decrease in concentration of cytochrome a3 in the achondroplastic preparations was due to an absence of cytochrome a3 and not to a change in its absorbancy (extinction coefficient). The decreased concentrations of cytochrome a3 in the achondroplastic cells may decrease the reactivity or affinity of the mitochondrial oxidative systems for oxygen and result in the phenotypic expression of the disease.  相似文献   

9.
Connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 (CTGF/Hcs24) is a multifunctional growth factor for fibroblasts, chondrocytes, and vascular endothelial cells. In the present study, we established transgenic (Tg) mice that overproduce CTGF/Hcs24 under the control of mouse type XI collagen promoter. Tg mice could develop and their embryonic and neonatal growth occurred normally. But they showed dwarfism within a few months of birth. X-ray analysis revealed that their bone density was decreased compared with normal mice. The femurs in the hindlimbs in particular showed an apparent low density. These results indicated that overexpression of CTGF/Hcs24 affects certain steps of endochondral ossification. In addition, the testes were much smaller than normal and fertility was affected in Tg mice, indicating that CTGF/Hcs24 may also regulate the embryonic development of the testis.  相似文献   

10.
It has been proposed that the basic abnormality in achondroplasia may be a quantitative defect in endochondral new bone formation secondary to decreased synthesis of somatomedin (SM) or abnormal binding of SM to specific receptors. To test this hypothesis, we have measured plasma SM levels and SM receptors on circulating mononuclear cells obtained from 5 achondroplastic dwarfs and 5 age-matched controls. Plasma SM levels were 0.82 +/- 0.14 U/ml (mean +/- S.E.M.) for the achondroplastic dwarfs and 0.90 +/- 0.12 U/ml for the controls. The specific binding of 125I-SM to 50 x 10(6) mononuclear cells was 7.66 +/- 1.11% for the dwarf group and 7.66 +/- 1.16% for the controls. Achondroplastic and control cells possessed equal numbers of receptor sites and identical receptor affinity for SM. The data indicate that plasma SM levels and SM binding to circulating mononuclear cells are normal in achondroplastic dwarfs and suggest a primary intrace-lular defect.  相似文献   

11.
Stromal cell-derived factor 1 (SDF-1/CXCL12/PBSF) plays important roles in the biological and physiological functions of haematopoietic and mesenchymal stem cells. This chemokine regulates the formation of multiple organ systems during embryogenesis. However, its roles in skeletal development remain unclear. Here we investigated the roles of SDF-1 in chondrocyte differentiation. We demonstrated that SDF-1 protein was expressed at pre-hypertrophic and hypertrophic chondrocytes in the newly formed endochondral callus of rib fracture as well as in the growth plate of normal mouse tibia by immunohistochemical analysis. Using SDF-1(-/-) mouse embryo, we histologically showed that the total length of the whole humeri of SDF-1(-/-) mice was significantly shorter than that of wild-type mice, which was contributed mainly by shorter hypertrophic and calcified zones in SDF-1(-/-) mice. Actin cytoskeleton of hypertrophic chondrocytes in SDF-1(-/-) mouse humeri showed less F-actin and rounder shape than that of wild-type mice. Primary chondrocytes from SDF-1(-/-) mice showed the enhanced formation of philopodia and loss of F-actin. The administration of SDF-1 to primary chondrocytes of wild-type mice and SDF-1(-/-) mice promoted the formation of actin stress fibers. Organ culture of embryonic metatarsals from SDF-1(-/-) mice showed the growth delay, which was recovered by an exogenous administration of SDF-1. mRNA expression of type X collagen in metatarsals and in primary chondrocytes of SDF-1(-/-) mouse embryo was down-regulated while the administration of SDF-1 to metatarsals recovered. These data suggests that SDF-1 regulates the actin organization and stimulates bone growth by mediating chondrocyte hypertrophy.  相似文献   

12.
童迅  贠喆  张栋  赵新文  曾照辉  于洋  马保安 《生物磁学》2013,(24):4648-4653
摘要目的:研究人正常软骨细胞及骨关节炎软骨细胞的体外分离、培养及鉴定方法,对其生物学特性进行对照并评价其生物学活性。方法:取人创伤性截肢与骨关节炎全膝置换的无菌膝关节软骨,采用两步酶消化法分离培养人关节软骨细胞,并进行传代培养。通过倒置相差显微镜下观察细胞形态,绘制生长曲线,测细胞增殖,甲苯胺蓝染色及Ⅱ型胶原免疫组织化学染色对细胞进行对照研究。结果:骨关节炎软骨细胞形态似成纤维细胞,生长速度明显较正常软骨细胞慢。MTT测细胞增殖显示,第2.4、6代骨关节炎软骨细胞在相同时间点大都比同代正常软骨细胞增殖速度慢(P〈0.05)。甲苯胺蓝及Ⅱ型胶原免疫组化染色显示,骨关节炎软骨细胞染色较正常软骨细胞浅,经多次传代后基本无着色。结论:正常软骨细胞5代以内细胞生长良好,生物学特性明显,5代以后出现去分化现象。骨关节炎软骨细胞增殖慢,生物学特征退变旱,符合软骨细胞退变的表现。这为骨关节炎在软骨细胞水平的研究提供了实验基础。  相似文献   

13.
Chondrocytes grown in monolayer culture at low density, with serum added, either dedifferentiate after several days whereby their cell shape changes or they are overgrown by fibroblast-like cells. The aim of this study was to optimize the cultivation of chondrocytes in monolayer culture and to slow down their transformation or their overgrowth by fibroblast-like cells. For this purpose freshly isolated chondrocytes of cartilage anlagen from 17-day-old mouse embryos were grown on plastic or collagen type II-coated substrates. With this model: (a) chondrocytes grown on plastic substrates had almost completely changed to fibroblast-like cells after 5 days in culture. (b) When grown on collagen type II, the chondrocytes maintained their round phenotype for more than 2 weeks in culture. (c) Immunomorphological investigations showed that chondrocytes produce collagen type II and fibronectin and express specific surface receptors (integrins of the β1-group) on the membrane from day 1 until the end of the culture period when grown on collagen type II. (d) Treatment with β1-integrin antibodies clearly reduces chondrocyte adhesion on collagen type II by about 70%. Hence, these data indicate that the most probable influence of collagen type II on cellular behaviour depends on the integrins participating in a chondrocyte—collagen type II interaction, and this model represents a pure chondrocyte culture which allows cell growth for an extended period.  相似文献   

14.
Convergent extension driven by mediolateral intercalation of chondrocytes is a key process that contributes to skeletal growth and morphogenesis. While progress has been made in deciphering the molecular mechanism that underlies this process, the involvement of mechanical load exerted by muscle contraction in its regulation has not been studied. Using the zebrafish as a model system, we found abnormal pharyngeal cartilage morphology in both chemically and genetically paralyzed embryos, demonstrating the importance of muscle contraction for zebrafish skeletal development. The shortening of skeletal elements was accompanied by prominent changes in cell morphology and organization. While in control the cells were elongated, chondrocytes in paralyzed zebrafish were smaller and exhibited a more rounded shape, confirmed by a reduction in their length-to-width ratio. The typical columnar organization of cells was affected too, as chondrocytes in various skeletal elements exhibited abnormal stacking patterns, indicating aberrant intercalation. Finally, we demonstrate impaired chondrocyte intercalation in growth plates of muscle-less Sp(d) mouse embryos, implying the evolutionary conservation of muscle force regulation of this essential morphogenetic process.Our findings provide a new perspective on the regulatory interaction between muscle contraction and skeletal morphogenesis by uncovering the role of muscle-induced mechanical loads in regulating chondrocyte intercalation in two different vertebrate models.  相似文献   

15.
16.
The fate of hypertrophic chondrocytes during endochondral ossification remains controversial. It has long been thought that the calcified cartilage is invaded by blood vessels and that new bone is deposited on the surface of the eroded cartilage by newly arrived cells. The present study was designed to determine whether hypertrophic chondrocytes were destined to die or could survive to participate in new bone formation. In a rabbit experiment, a membrane filter with a pore size of 1 µm was inserted in the middle of the hypertrophic zone of the distal growth plate of ulna. In 33 of 37 animals, vascular invasion was successfully interposed by the membrane filter. During 8 days, the cartilage growth plate was enlarged, making the thickness 3-fold greater than that of the nonoperated control side. Histological examination demonstrated that the hypertrophic zone was exclusively elongated. At the terminal end of the growth plate, hypertrophic chondrocytes extruded from their territorial matrix into the open cavity on the surface of the membrane filter. The progenies of hypertrophic chondrocytes (PHCs) were PCNA positive and caspase-3 negative. In situ hybridization studies demonstrated that PHCs did not express cartilage matrix proteins anymore but expressed bone matrix proteins. Immunohistochemical studies also demonstrated that the new matrix produced by PHCs contained type I collagen, osteonectin, and osteocalcin. Based on these results, we concluded that hypertrophic chondrocytes switched into bone-forming cells after vascular invasion was interposed in the normal growth plate.  相似文献   

17.
Chondrocyte proliferation and differentiation requires their attachment to the collagen type II-rich matrix of developing bone. This interaction is mediated by integrins and their cytoplasmic effectors, such as the integrin-linked kinase (ILK). To elucidate the molecular mechanisms whereby integrins control these processes, we have specifically inactivated the ILK gene in growth plate chondrocytes using the Cre-lox methodology. Mice carrying an ILK allele flanked by loxP sites (ILK-fl) were crossed to transgenic mice expressing the Cre recombinase under the control of the collagen type II promoter. Inactivation of both copies of the ILK-fl allele lead to a chondrodysplasia characterized by a disorganized growth plate and to dwarfism. Expression of chondrocyte differentiation markers such as collagen type II, collagen type X, Indian hedgehog and the PTH-PTHrP receptor was normal in ILK-deficient growth plates. In contrast, chondrocyte proliferation, assessed by BrdU or proliferating cell nuclear antigen labeling, was markedly reduced in the mutant growth plates. Cell-based assays showed that integrin-mediated adhesion of primary cultures of chondrocytes from mutant animals to collagen type II was impaired. ILK inactivation in chondrocytes resulted in reduced cyclin D1 expression, and this most likely explains the defect in chondrocyte proliferation observed when ILK is inactivated in growth plate cells.  相似文献   

18.
This study determined the effects of chondrocyte source, cell concentration, and growth period on cartilage production when isolated porcine cells are injected subcutaneously in a nude mouse model. Chondrocytes were isolated from both ear and articular cartilage and were suspended in Ham's F-12 medium at concentrations of 10, 20, 40, and 80 million cells per cubic centimeter. Using the nude mouse model, each concentration group was injected subcutaneously in 100-microl aliquots and was allowed to incubate for 6 weeks in vivo. In addition, cells suspended at a fixed concentration of 40 million cells per cubic centimeter were injected in 100-microl aliquots and were incubated for 1, 2, 3, 4, 5, 6, 9, and 12 weeks. Each concentration or time period studied contained a total of eight mice, with four samples harvested per mouse for a final sample size of 32 constructs. All neocartilage samples were analyzed by histologic characteristics, mass, glycosaminoglycan level, and DNA content. Control groups consisted of native porcine ear and articular cartilage.Specimen mass increased with increasing concentration and incubation time. Ear neocartilage was larger than articular neocartilage at each concentration and time period. At 40 million cells per cubic centimeter, both ear and articular chondrocytes produced optimal neocartilage, without limitations in growth. Specimen mass increased with incubation time up to 6 weeks in both ear and articular samples. No significant variations in glycosaminoglycan content were found in either articular or ear neocartilage, with respect to variable chondrocyte concentration or growth period. Although articular samples demonstrated no significant trends in DNA content over time, ear specimens showed decreasing values through 6 weeks, inversely proportional to increase in specimen mass. Although both articular and ear sources of chondrocytes have been used in past tissue-engineering studies with success, this study indicates that a suspension of ear chondrocytes injected into a subcutaneous location will produce biochemical and histologic data with greater similarity to those of native cartilage. The authors believe that this phenomenon is attributable to the local environment in which isolated chondrocytes from different sources are introduced. The subcutaneous environment of native ear cartilage accommodates subcutaneously injected ear chondrocyte transplants better than articular transplants. Native structural and biochemical cues within the local environment are believed to guide the proliferation of the differentiated chondrocytes.  相似文献   

19.
Summary The cytochemical distribution of thiamine pyrophosphatase (TPPase) activity in Meckel's cartilage cells of the mouse embryo has been studied during the endochondral ossification. All the cartilage cells contain reaction product within the Golgi apparatus. In immature chondrocytes, at the reserve cell zone, TPPase activity is restricted to several inner cisternae of independent Golgi apparatus. In mature cells at the proliferative cell zone, several Golgi complexes form a Golgi network connecting with each other by the TPPase positive tubular stalks. Golgi cisternae, condensing vacuoles and vesicles also contain reaction product. In the hypertrophic chondrocytes located in the calcifying zone, their disorganized Golgi apparatus still retain reaction product. Some chondrocytes, even those located within calcified or opened lacunae, exhibit intact structures and normal cytochemical enzyme distribution. These data indicate the possibility that some chondrocytes may survive and contribute the formation of mandible.  相似文献   

20.
Osteopontin, a sulfated phosphoprotein with cell binding and matrix binding properties, is expressed in a variety of tissues. In the embryonic growth plate, osteopontin expression was found in bone-forming cells and in hypertrophic chondrocytes. In this study, the expression of osteopontin was analyzed in normal and osteoarthritic human knee cartilage. Immunohistochemistry, using a monoclonal anti-osteopontin antibody was negative on normal cartilage. These results were confirmed in Western blot experiments, using partially purified extracts of normal knee cartilage. No osteopontin gene expression was observed in chondrocytes of adult healthy cartilage, however, in the subchondral bone plate, expression of osteopontin mRNA was detected in the osteoblasts. In cartilage from patients with osteoarthritis, osteopontin could be detected by immunohistochemistry, Western blot analysis, in situ hybridization, and Northern blot analysis. A qualitative analysis indicated that osteopontin protein deposition and mRNA expression increase with the severity of the osteoarthritic lesions and the disintegration of the cartilaginous matrix. Osteopontin expression in the cartilage was limited to the chondrocytes of the upper deep zone, showing cellular and territorial deposition. The strongest osteopontin detection was found in deep zone chondrocytes and in clusters of proliferating chondrocytes from samples with severe osteoarthritic lesions. These data show the expression of osteopontin in adult human osteoarthritic chondrocytes, suggesting that chondrocyte differentiation and the expression of differentiation markers in osteoarthritic cartilage resembles that of epiphyseal growth plate chondrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号