首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple synaptotagmins are expressed in brain, but only synaptotagmins I and II have known functions in fast, synchronous Ca2+-triggered neurotransmitter release. Synaptotagmin III was proposed to regulate other aspects of synaptic vesicle exocytosis, particularly its slow component. Such a function predicts that synaptotagmin III should be an obligatory synaptic vesicle protein, as would also be anticipated from its high homology to synaptotagmins I and II. To test this hypothesis, we studied the distribution, developmental expression, and localization of synaptotagmin III and its closest homolog, synaptotagmin VI. We find that synaptotagmins III and VI are present in all brain regions in heterogeneous distributions and that their levels increase during development in parallel with synaptogenesis. Furthermore, we show by immunocytochemistry that synaptotagmin III is concentrated in synapses, as expected. Surprisingly, however, we observed that synaptotagmin III is highly enriched in synaptic plasma membranes but not in synaptic vesicles. Synaptotagmin VI was also found to be relatively excluded from synaptic vesicles. Our data suggest that synaptotagmins III and VI perform roles in neurons that are not linked to synaptic vesicle exocytosis but to other Ca2+-related nerve terminal events, indicating that the functions of synaptotagmins are more diverse than originally thought.  相似文献   

2.
Synaptotagmins I and II are Ca(2+) binding proteins of synaptic vesicles essential for fast Ca(2+)-triggered neurotransmitter release. However, central synapses and neuroendocrine cells lacking these synaptotagmins still exhibit Ca(2+)-evoked exocytosis. We now propose that synaptotagmin VII functions as a plasma membrane Ca(2+) sensor in synaptic exocytosis complementary to vesicular synaptotagmins. We show that alternatively spliced forms of synaptotagmin VII are expressed in a developmentally regulated pattern in brain and are concentrated in presynaptic active zones of central synapses. In neuroendocrine PC12 cells, the C(2)A and C(2)B domains of synaptotagmin VII are potent inhibitors of Ca(2+)-dependent exocytosis, but only when they bind Ca(2+). Our data suggest that in synaptic vesicle exocytosis, distinct synaptotagmins function as independent Ca(2+) sensors on the two fusion partners, the plasma membrane (synaptotagmin VII) versus synaptic vesicles (synaptotagmins I and II).  相似文献   

3.
Synaptotagmin (p65) is an abundant synaptic vesicle protein that contains two copies of a sequence that is homologous to the regulatory region of protein kinase C. Full length cDNAs encoding human and Drosophila synaptotagmins were characterized to study its structural and functional conservation in evolution. The deduced amino acid sequences for human and rat synaptotagmins show 97% identity, whereas Drosophila and rat synaptotagmins are only 57% identical but exhibit a selective conservation of the two internal repeats that are homologous to the regulatory region of protein kinase C (78% invariant residues in all three species). The two internal repeats of synaptotagmin are only slightly more homologous to each other than to protein kinase C, and the differences between the repeats are conserved in evolution, suggesting that they might not be functionally equivalent. The cytoplasmic domains of human and Drosophila synaptotagmins produced as recombinant proteins in Escherichia coli specifically bound phosphatidylserine similar to rat synaptotagmin. They also hemagglutinated trypsinized erythrocytes at nanomolar concentrations. Hemagglutination was inhibited both by negatively charged phospholipids and by a recombinant fragment from rat synaptotagmin that contained only a single copy of the two internal repeats. Together these results demonstrate that synaptotagmin is highly conserved in evolution compatible with a function in the trafficking of synaptic vesicles at the active zone. The similarity of the phospholipid binding properties of the cytoplasmic domains of rat, human, and Drosophila synaptotagmins and the selective conservation of the sequences that are homologous to protein kinase C suggest that these are instrumental in phospholipid binding. The human gene for synaptotagmin was mapped by Southern blot analysis of DNA from somatic cell hybrids to chromosome 12 region cen-q21, and the Drosophila gene by in situ hybridization to 23B.  相似文献   

4.
Domain structure of synaptotagmin (p65)   总被引:25,自引:0,他引:25  
Synaptotagmin (p65) is an abundant and evolutionarily conserved protein of synaptic vesicles that contains two copies of an internal repeat homologous to the regulatory region of protein kinase C. In the current study, we have investigated the biochemical properties of synaptotagmin, demonstrating that it contains five protein domains: an intravesicular amino-terminal domain that is glycosylated but lacks a cleavable signal sequence; a single transmembrane region; a sequence separating the transmembrane region from the two repeats homologous to protein kinase C; the two protein kinase C-homologous repeats; and a conserved carboxyl-terminal sequence following the two repeats homologous to protein kinase C. Sucrose density gradient centrifugations and gel electrophoresis indicate that synaptotagmin monomers associate into dimers and are part of a larger molecular weight complex. A sequence predicted to form an amphipathic alpha-helix that may cause the stable dimerization of synaptotagmin is found in its third domain between the transmembrane region and the protein kinase C-homologous repeats. Synaptotagmin contains a single hypersensitive proteolytic site that is located immediately amino-terminal to the amphipathic alpha-helix, suggesting that synaptotagmin contains a particularly exposed region as the peptide backbone emerges from the dimer. Finally, subcellular fractionation and antibody bead purification demonstrate that synaptotagmin co-purifies with synaptophysin and other synaptic vesicle markers in brain. However, in the adrenal medulla, synaptotagmin was found in both synaptophysin-containing microvesicles and in chromaffin granules that are devoid of synaptophysin, suggesting a shared role for synaptotagmin in the exocytosis of small synaptic vesicles and large dense core catecholaminergic vesicles.  相似文献   

5.
Synaptotagmins are synaptic vesicle proteins containing two calcium-binding C2 domains which are involved in coupling calcium influx through voltage-gated channels to vesicle fusion and exocytosis of neurotransmitters. The interaction of synaptotagmins with native P/Q-type calcium channels was studied in solubilized synaptosomes from rat cerebellum. Antibodies against synaptotagmins I and II, but not IV co-immunoprecipitated [125I]omega-conotoxin MVIIC-labelled calcium channels. Direct interactions were studied between in vitro-translated [35S]synaptotagmin I and fusion proteins containing cytoplasmic loops of the alpha1A subunit (BI isoform). Gel overlay revealed the association of synaptotagmin I with a single region (residues 780-969) located in the intracellular loop connecting homologous domains II and III. Saturable calcium-independent binding occurred with equilibrium dissociation constants of 70 nM and 340 nM at 4 degrees C and pH 7.4, and association was blocked by addition of excess recombinant synaptotagmin I. Direct synaptotagmin binding to the pore-forming subunit of the P/Q-type channel may optimally locate the calcium-binding sites that initiate exocytosis within a zone of voltage-gated calcium entry.  相似文献   

6.
Sugita S  Südhof TC 《Biochemistry》2000,39(11):2940-2949
Synaptotagmins represent a family of neuronal proteins thought to function in membrane traffic. The best characterized synaptotagmin, synaptotagmin I, is essential for fast Ca2+-dependent synaptic vesicle exocytosis, indicating a role in the Ca2+ triggering of membrane fusion. Synaptotagmins contain two C2 domains, the C2A and C2B domains, which bind Ca2+ and may mediate their functions by binding to specific targets. For synaptotagmin I, several putative targets have been identified, including the SNARE proteins syntaxin and SNAP-25. However, it is unclear which of the many binding proteins are physiologically relevant. Furthermore, more than 10 highly homologous synaptotagmins are expressed in brain, but it is unknown if they execute similar binding reactions. To address these questions, we have performed a systematic, unbiased study of proteins which bind to the C2A domains of synaptotagmins I-VII. Although the various C2A domains exhibit similar binding activities for phospholipids and syntaxin, we found that they differ greatly in their protein binding patterns. Surprisingly, none of the previously characterized binding proteins for synaptotagmin I are among the major interacting proteins identified. Instead, several proteins that were not known to interact with synaptotagmin I were bound tightly and stoichiometrically, most prominently the NSF homologue VCP, which is thought to be involved in membrane fusion, and an unknown protein of 40 kDa. Point mutations in the Ca2+ binding loops of the C2A domain revealed that the interactions of these proteins with synaptotagmin I were highly specific. Furthermore, a synaptotagmin I/VCP complex could be immunoprecipitated from brain homogenates in a Ca2+-dependent manner, and GST-VCP fusion proteins efficiently captured synaptotagmin I from brain. However, when we investigated the tissue distribution of VCP, we found that, different from synaptic proteins, VCP was not enriched in brain and exhibited no developmental increase paralleling synaptogenesis. Moreover, binding of VCP, which is an ATPase, to synaptotagmin I was inhibited by both ATP and ADP, indicating that the native, nucleotide-occupied state of VCP does not bind to synaptotagmin. Together our findings suggest that the C2A-domains of different synaptotagmins, despite their homology, exhibit a high degree of specificity in their protein interactions. This is direct evidence for diverse roles of the various synaptotagmins in brain, consistent with their differential subcellular localizations. Furthermore, our results indicate that traditional approaches, such as affinity chromatography and immunoprecipitations, are useful tools to evaluate the overall spectrum of binding activity for a protein but are not sufficient to estimate physiological relevance.  相似文献   

7.
Immunocytochemical Analysis of Axonal Outgrowth in Synaptotagmin Mutations   总被引:1,自引:0,他引:1  
Abstract: Synaptotagmin is a synaptic vesicle specific protein that binds calcium and phospholipids in vitro and is required for calcium-regulated fusion of synaptic vesicles with the presynaptic membrane. We have examined the possible requirement for synaptotagmin in axonal outgrowth by following neuronal development in Drosophila embryos deficient for the synaptotagmin gene. We find that synaptotagmin is expressed abundantly in axons and growth cones before synapse formation in wild-type embryos. Using antibodies to the intravesicular domain of synaptotagmin to label live embryos, we demonstrate that vesicle populations containing synaptotagmin actively undergo exocytosis during axonogenesis. We have used immunocytochemical techniques to examine the distribution of the axonal protein Fasciclin II, the presynaptic membrane protein syntaxin, and the synaptic vesicle protein cysteine string protein, in synaptotagmin null mutations. The distribution of these proteins is similar in wild-type and synaptotagmin mutant embryos, suggesting that synaptotagmin is not required for axonogenesis in the CNS or PNS. Based on these findings, we suggest that the molecular mechanisms underlying vesicular-mediated membrane expansion during axonal outgrowth are distinct from those required for synaptic vesicle fusion during neurotransmitter release.  相似文献   

8.
Synaptotagmins in membrane traffic: which vesicles do the tagmins tag?   总被引:4,自引:0,他引:4  
Marquèze B  Berton F  Seagar M 《Biochimie》2000,82(5):409-420
The aim of this review is to give a broad picture of what is actually known about the synaptotagmin family. Synaptotagmin I is an abundant synaptic vesicle and secretory granule protein in neurons and endocrine cells which plays a key role in Ca(2+)-induced exocytosis. It belongs to the large family of C2 domain-proteins as it contains two internal repeats that have homology to the C2 domain of protein kinase C. Eleven synaptotagmin genes have been described in rat and mouse. Except for synaptotagmin I, and by analogy synaptotagmin II, the functions of these proteins are unknown. In this review we focus on data obtained on the various isoforms without exhaustively discussing the role of synaptotagmin I in neurotransmission. Numerous in vitro interactions of synaptotagmin I with key components of the exocytosis-endocytosis machinery have been reported. Additional data concerning the other synaptotagmins are now becoming available and are reviewed here. Only interactions which have been described for several synaptotagmins, are mentioned. It is unlikely that a single isoform displays all of these potential interactions in vivo and probably the subcellular distribution of the protein will favor some of them and preclude others. Therefore, to discuss the putative role of the various synaptotagmins we have examined in detail published data concerning their localization.  相似文献   

9.
N-glycosylation is essential for vesicular targeting of synaptotagmin 1   总被引:3,自引:0,他引:3  
Synaptotagmins 1 and 7 are candidate Ca(2+) sensors for exocytosis localized to synaptic vesicles and plasma membranes, respectively. We now show that the N-terminal intraluminal sequence of synaptotagmin 1, when transplanted onto synaptotagmin 7, redirects synaptotagmin 7 from the plasma membrane to secretory vesicles. Conversely, mutation of the N-terminal N-glycosylation site of synaptotagmin 1 redirects synaptotagmin 1 from vesicles to the plasma membrane. In cultured hippocampal neurons, the plasma membrane-localized mutant of synaptotagmin 1 suppressed the readily releasable pool of synaptic vesicles, whereas wild-type synaptotagmin 1 did not. In addition to the intraluminal N-glycosylation site, the cytoplasmic C(2) domains of synaptotagmin 1 were required for correct targeting but could be functionally replaced by the C(2) domains of synaptotagmin 7. Our data suggest that the intravesicular N-glycosylation site of synaptotagmin 1 collaborates with its cytoplasmic C(2) domains in directing synaptotagmin 1 to synaptic vesicles via a novel N-glycosylation-dependent mechanism.  相似文献   

10.
Synaptotagmins represent a family of putative vesicular trafficking proteins. With synaptotagmin 13, we have now identified a novel synaptotagmin, making this one of the largest families of trafficking proteins. Similar to synaptotagmins 3, 4, 6, 7, 9, and 11, synaptotagmin 13 is expressed at highest levels in brain but is also detectable at lower levels in non-neuronal tissues. Synaptotagmin 13 is composed of the canonical domains of synaptotagmins that include an N-terminal transmembrane region and two C-terminal cytoplasmic C2-domains (C2A- and C2B-domain) and a connecting sequence between the transmembrane region and the C2-domains. Different from most other synaptotagmins, however, synaptotagmin 13 does not have an N-terminal sequence preceding the transmembrane region, and features an unusually long connecting sequence that is proline-rich. Furthermore, the C2-domains of synaptotagmin are degenerate and lack almost all of the residues involved in Ca2+ binding, suggesting that synaptotagmin 13 is not a Ca2+-binding protein unlike most other synaptotagmins. Our data demonstrate that synaptotagmins represent a larger and more complex gene family than previously envisioned.  相似文献   

11.
Botulinum neurotoxins (BoNTs) induce muscle paralysis by selectively entering cholinergic motoneurons and subsequent specific cleavage of core components of the vesicular fusion machinery. Complex gangliosides are requisite for efficient binding to neuronal cells, but protein receptors are critical for internalization. Recent work evidenced that synaptotagmins I and II can function as protein receptors for BoNT/B (Dong, M., Richards, D. A., Goodnough, M. C., Tepp, W. H., Johnson, E. A., and Chapman, E. R. (2003) J. Cell Biol. 162, 1293-1303). Here, we report the protein receptor for a second BoNT serotype. Like BoNT/B, BoNT/G employs synaptotagmins I and II to enter phrenic nerve cells. Using pull-down assays we show that only BoNT/G, but neither the five remaining BoNTs nor tetanus neurotoxin, interacts with synaptotagmins I and II. In contrast to BoNT/B, interactions with both isoforms are independent of the presence of gangliosides. Peptides derived from the luminal domain of synaptotagmin I and II are capable of blocking the neurotoxicity of BoNT/G in phrenic nerve preparations. Pull-down and neutralization assays further established the membrane-juxtaposed 10 luminal amino acids of synaptotagmins I and II as the critical segment for neurotoxin binding. In addition, we show that the carboxyl-terminal domain of the cell binding fragment of BoNT/B and BoNT/G mediates the interaction with their protein receptor.  相似文献   

12.
Synaptotagmins constitute a family of membrane proteins that are characterized by one transmembrane region and two C2 domains. Recent genetic and biochemical studies have indicated that oligomerization of synaptotagmin (Syt) I is important for expression of function during exocytosis of synaptic vesicles. However, little is known about hetero-oligomerization in the synaptotagmin family. In this study, we showed that the synaptotagmin family is a type I membrane protein (N(lumen)/C(cytoplasm)) by introducing an artificial N-glycosylation site at the N-terminal domain, and systematically examined all the possible combinations of hetero-oligomerization among synaptotagmin family proteins (Syts I-XI). We classified the synaptotagmin family into four distinct groups based on differences in Ca(2+)-dependent and -independent oligomerization activity. Group A Syts (III, V, VI, and X) form strong homo- and hetero-oligomers by disulfide bonds at an N-terminal cysteine motif irrespective of the presence of Ca(2+) [Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427]. Group B Syts (I, II, VIII, and XI) show moderate homo-oligomerization irrespective of the presence of Ca(2+). Group C synaptotagmins are characterized by weak Ca(2+)-dependent (Syts IX) or no homo-oligomerization activity (Syt IV). Syt VII (Group D) has unique Ca(2+)-dependent homo-oligomerization properties with EC(50) values of about 150 microM Ca(2+) [Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185]. Syts IV, VIII, and XI did not show any apparent hetero-oligomerization activity, but some sets of synaptotagmin isoforms can hetero-oligomerize in a Ca(2+)-dependent and/or -independent manner. Our data suggest that Ca(2+)-dependent and -independent hetero-oligomerization of synaptotagmins may create a variety of Ca(2+)-sensors.  相似文献   

13.
Transmembrane topography and evolutionary conservation of synaptophysin   总被引:21,自引:0,他引:21  
Synaptophysin is the major integral membrane protein of small synaptic vesicles. Its primary structure deduced from rat and human complementary DNA sequences predicts that synaptophysin contains four transmembrane regions and a carboxyl-terminal domain having a novel repetitive structure. To elucidate the transmembrane organization of this protein in the synaptic vesicle, five antipeptide antibodies were raised. The site-specific antibodies were used to map the cognate sequences to the cytoplasmic or intravesicular side of the synaptic vesicle membrane by determining the susceptibility of the epitopes to proteolysis. The results confirm a topographic model for synaptophysin in which the protein spans the vesicle membrane four times, with both the amino and carboxyl terminus being cytoplasmic. In addition, the evolutionary conservation of the synaptophysin domains was addressed as a function of their membrane localization. To this end the primary structure of bovine synaptophysin was determined. Sequence comparisons between bovine, rat, and human synaptophysin revealed that only the intravesicular loops showed a significant number of amino acid substitutions (22%), while the transmembrane regions and cytoplasmic sequences were highly conserved (3% substitutions). These results depict synaptophysin as a protein with multiple membrane spanning regions whose functional site is likely to reside in highly conserved intramembranous and cytoplasmic sequences.  相似文献   

14.
The synaptotagmins now constitute a large family of membrane proteins characterized by one transmembrane region and two C2 domains. Dimerization of synaptotagmin (Syt) I, a putative low affinity Ca(2+) sensor for neurotransmitter release, is thought to be important for expression of function during exocytosis of synaptic vesicles. However, little is known about the self-dimerization properties of other isoforms. In this study, we demonstrate that a subclass of synaptotagmins (III, V, VI, and X) (Ibata, K., Fukuda, M., and Mikoshiba, K. (1998) J. Biol. Chem. 273, 12267-12273) forms beta-mercaptoethanol-sensitive homodimers and identify three evolutionarily conserved cysteine residues at the N terminus (N-terminal cysteine motif, at amino acids 10, 21, and 33 of mouse Syt III) that are not conserved in other isoforms. Site-directed mutagenesis of these cysteine residues and co-immunoprecipitation experiments clearly indicate that the first cysteine residue is essential for the stable homodimer formation of Syt III, V, or VI, and heterodimer formation between Syts III, V, VI, and X. We also show that native Syt III from mouse brain forms a beta-mercaptoethanol-sensitive homodimer. Our results suggest that the cysteine-based heterodimerization between Syt III and Syt V, VI, or X, which have different biochemical properties, may modulate the proposed function of Syt III as a putative high affinity Ca(2+) sensor for neurotransmitter release.  相似文献   

15.
Rab3 and synaptotagmin have been reported to be the key proteins that have opposite actions but cooperatively play critical regulatory roles in selecting and limiting the number of vesicles released at central synapses. However, the exact mechanism has not been fully understood. In this study, Rab3A and synaptotagmin I, the most abundant isoforms of Rab3 and synaptotagmin, respectively, in brain were for the first time demonstrated to directly interact with each other in a Ca2+-independent manner, and the KKKK motif in the C2B domain of synaptotagmin I was a key site for the Rab3A binding, which was further confirmed by the competitive inhibition of inositol hexakisphosphate. Further studies demonstrated that Rab3A competitively affected the synaptotagmin I interaction with syntaxin 1B that was involved in membrane fusion during the synaptic vesicle exocytosis. These data indicate that Rab3A is a new synaptotagmin I interacting partner and may participate in the regulation of synaptic membrane fusion and thus the vesicle exocytosis by competitively modulating the interaction of synaptotagmin with syntaxin of the t-SNARE complex in presynaptic membranes.  相似文献   

16.
Upon entering a presynaptic terminal, an action potential opens Ca(2+) channels, and transiently increases the local Ca(2+) concentration at the presynaptic active zone. Ca(2+) then triggers neurotransmitter release within a few hundred microseconds by activating synaptotagmins Ca(2+). Synaptotagmins bind Ca(2+) via two C2-domains, and transduce the Ca(2+) signal into a nanomechanical activation of the membrane fusion machinery; this activation is mediated by the Ca(2+)-dependent interaction of the synaptotagmin C2-domains with phospholipids and SNARE proteins. In triggering exocytosis, synaptotagmins do not act alone, but require an obligatory cofactor called complexin, a small protein that binds to SNARE complexes and simultaneously activates and clamps the SNARE complexes, thereby positioning the SNARE complexes for subsequent synaptotagmin action. The conserved function of synaptotagmins and complexins operates generally in most, if not all, Ca(2+)-regulated forms of exocytosis throughout the body in addition to synaptic vesicle exocytosis, including in the degranulation of mast cells, acrosome exocytosis in sperm cells, hormone secretion from endocrine cells, and neuropeptide release.  相似文献   

17.
Among the 16 known vertebrate synaptotagmins, only Syt I, IV and VII are also present in C. elegans and Drosophila, suggesting that these isoforms play especially important roles in vivo. Extensive evidence indicates that Syt I is a synaptic vesicle Ca(2+) sensor essential for rapid neurotransmitter release. It has been suggested that the ubiquitously expressed Syt VII also regulates synaptic vesicle exocytosis, despite its presence in several tissues in addition to the brain. Here, we discuss recent genetic and biochemical evidence that does not support this view. Syt VII null mutants do not have a neurological phenotype, and the protein is found on the membrane of lysosomes and some non-synaptic secretory granules, where it regulates Ca(2+)-triggered exocytosis and plasma membrane repair.  相似文献   

18.
Abstract : The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N -ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (α-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+ - and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or α-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

19.
Tetanus neurotoxin and botulinum neurotoxins are the causative agents of tetanus and botulism. They block the release of neurotransmitters from synaptic vesicles in susceptible animals and man and act in nanogram quantities because of their ability to specifically attack motoneurons. They developed an ingenious strategy to enter neurons. This involves a concentration step via complex polysialo gangliosides at the plasma membrane and the uptake and ride in recycling synaptic vesicles initiated by binding to a specific protein receptor. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had misused before to enter their target cells, via specific cleavage of protein core components of the cellular membrane fusion machinery. The uptake of four out of seven known botulinum neurotoxins into synaptic vesicles has been demonstrated to rely on binding to intravesicular segments of the synaptic vesicle proteins synaptotagmin or synaptic vesicle protein 2. This review summarizes the present knowledge about the cell receptor molecules and the mode of toxin-receptor interaction that enables the toxins' sophisticated access to their site of action.  相似文献   

20.
Is synaptotagmin the calcium sensor?   总被引:5,自引:0,他引:5  
After much debate, recent progress indicates that the synaptic vesicle protein synaptotagmin I probably functions as the calcium sensor for synchronous neurotransmitter release. Following calcium influx into presynaptic terminals, synaptotagmin I rapidly triggers the fusion of synaptic vesicles with the plasma membrane and underlies the fourth-order calcium cooperativity of release. Biochemical and genetic studies suggest that lipid and SNARE interactions underlie synaptotagmin's ability to mediate the incredible speed of vesicle fusion that is the hallmark of fast synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号