首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The effect of variously substituted derivatives of 4-hydroxybenzoic acid on 4-hydroxybenzoate:polyprenyltransferase activity in mitochondrial preparations derived from rat liver and brain has been investigated. Catecholamines such as dihyroxyphenylalanine and norepinephrine showed a minor inhibition of the activity of the enzyme in brain mitochondrial preparations, 4-aminobenzoic acid and 4-chlorobenzoic acid proved to be the most potent inhibitors of the reaction. Inhibition by 4-hydroxymercuribenzoate indicated that -SH groups were essential for activity. Studies using 14C-labeled compounds further revealed that 4-aminobenzoic acid was inhibitory by virtue of its ability to serve as an alternate substrate for prenylation. The product of the prenylation is identified as 3-polyprenyl-4-aminobenzoate based on chromatographic characteristics of the products formed in liver mitochondria and Escherichia coli, the retention of the carboxyl group of 4-[carboxyl-14C]aminobenzoate, the incorporation of isopentenyl pyrophosphate, the effect of bacitracin, and the retention of the amino group. 4-Chlorobenzoic acid was not prenylated. A survey of rat tissues shows that heart tissue contains maximum polyprenyltransferase activity when compared to liver, kidney, spleen and brain. The significance of the above results is discussed.  相似文献   

2.
4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it.  相似文献   

3.
Cell-free synthesis of bacteriophage T4 glucosyl transferase   总被引:5,自引:0,他引:5  
  相似文献   

4.
5.
6.
7.
The reversibility of phosphoethanolamine transferase (EC 2.7.8.1) in rat brain is demonstrated in this paper. Microsomal ethanolamine glycerophospholipids were prelabeled with an intracerebral injection of [3H]ethanolamine 4 h before killing young rats. Labeled CDPethanolamine was produced by incubation of the microsomes with CMP, although to a lesser extent than for the previously observed release of CDPcholine. Ethanolamine and choline glycerophospholipids were labeled with [2-3H]glycerol by incubation with primary cultures of rat brain. Microsomes from rat brains, with diisopropyl phosphofluoridate for inhibition of lipases, were incubated with the labeled glycerophospholipids separately, and labeled diacylglycerols were produced. The kinetic parameters of phosphoethanolamine transferase and phosphocholine transferase (EC 2.7.8.2) were compared by incubating rat brain microsomes with [3H]CMP. Inclusion of AMP in the reaction mixture was necessary in order to inhibit the hydrolysis of CMP by an enzyme with the properties of 5'-nucleotidase (EC 3.1.3.5). For phosphoethanolamine transferase and phosphocholine transferase respectively, the Km values for CMP were 40 and 125 microM and the V values were 2.3 and 21.6 nmol/h per mg protein. The reversibility of both enzymes permits the interconversion of the diacylglycerol moieties of choline and ethanolamine glycerophospholipids. During brain ischemia, a principal pathway for degradation of ethanolamine glycerophospholipids may be by reversal of phosphoethanolamine transferase followed by hydrolysis of diacylglycerols by the lipase.  相似文献   

8.
The covalent addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) groups to lipid A, which resides in the outer membranes of bacteria such as Salmonella typhimurium and Escherichia coli, is the final step in the polymyxin-resistance pathway in these organisms. This modification is catalyzed by the inner membrane protein 4-amino-4-deoxy-L-arabinose transferase (ArnT). Little is known about the ArnT protein structure because it has not previously been purified. We report here the first expression and purification of 6 x His-tagged S. typhimurium ArnT in NovaBlue cells. The enzyme was purified using sequential Q-Sepharose anion exchange and HisLink nickel affinity column chromatography. The purified protein has an apparent molecular weight of 62 kDa on SDS-PAGE and the identity of the purified ArnT was confirmed by Western blot using a monoclonal antibody against the His-tag and by MALDI-TOF mass spectrometry. Purified ArnT protein was shown to be highly alpha-helical as determined by circular dichroism analysis. A chromosomal ArnT knockout strain of E. coli BL21(DE3) was developed to allow in vivo functional analysis of plasmid-encoded ArnT constructs, and a polymyxin assay was used to confirm that the cloned ArnT proteins retained full activity. These studies provide an essential foundation for further analysis of ArnT structure and function using mutagenesis and biophysical techniques.  相似文献   

9.
Several lines of evidence, including an increased level of lipid peroxidation and the depletion of antioxidant molecules like as glutathione (GSH), indicate that oxidative stress plays an important role in the pathogenesis of several neurodegenerative disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD). We previously observed a significant increased level of DNA oxidative damage in peripheral blood cells of PD patients, with respect to controls, moreover, the activity of glutathione transferases (GSTs) measured in circulating plasma was higher in controls than in PD patients, suggesting a lower enzymatic protection in PD individuals. Among human GSTs, glutathione transferase A4-4 displays a high catalitic activity towards 4-hydroxy-2-nonenal (HNE), a marker of lipid peroxidation whose levels have been found significantly increased in the substantia nigra of Parkinson's disease patients, in respect to controls. We performed this study to determine the presence of allelic variants of functional interest in the coding region of the hGSTA4 gene on 60 PD patients and 60 healthy controls. By the combined effort of polymerase chain reaction/single-strand conformation polymorphisms (PCR/SSCP) techniques, we observed a single nucleotide polymorphism (SNP) G351A leading to the silent mutation Gln117Gln. No significant difference was observed in the distribution of this polymorphism between PD individuals and controls, moreover, we did not observe any other polymorphism in the hGSTA4 gene in our population. Further studies are required to test the role played by both factors regulating the level of the expression of the hGSTA4 gene and any possible post-translational modification of the protein, in the protection against oxidative damage in neuronal cells.  相似文献   

10.
PPTases (phosphopantetheinyl transferases) are of great interest owing to their essential roles in activating fatty acid, polyketide and non-ribosomal peptide synthetase enzymes for both primary and secondary metabolism, as well as an increasing number of biotechnological applications. However, existing techniques for PPTase characterization and development are cumbersome and technically challenging. To address this, we have developed the indigoidine-synthesizing non-ribosomal peptide synthetase BpsA as a reporter for PPTase activity. Simple co-transformation allows rapid assessment of the ability of a PPTase candidate to activate BpsA in vivo. Kinetic parameters with respect to either CoA or BpsA as variable substrate can then be derived in vitro by continuously measuring the rate of indigoidine synthesis as the PPTase progressively converts BpsA from its apo into holo form. Subsequently, a competition assay, in which BpsA and purified carrier proteins compete for a limited pool of CoA, enables elucidation of kinetic parameters for a PPTase with those carrier proteins. We used this system to conduct a rapid characterization of three different PPTase enzymes: Sfp of Bacillus subtilis A.T.C.C.6633, PcpS of Pseudomonas aeruginosa PAO1, and the putative PPTase PP1183 of Ps. putida KT2440. We also demonstrate the utility of this system for discovery and characterization of PPTase inhibitors.  相似文献   

11.
There is a remarkable difference in the isozyme pattern between cardiac and hepatic glutathione S-transferases in rat (Ishikawa, T., and Sies, H. (1984) FEBS Lett. 169, 156-160), and one near-neutral isozyme (pI = 6.9) of the cardiac glutathione S-transferases was found to have a significantly high activity toward 4-hydroxynonenal. The isozyme was inhibited by the resulting glutathione S-conjugate of 4-hydroxynonenal competitively with GSH and noncompetitively with 4-hydroxynonenal. The kinetic parameters estimated for the isozyme were: kcat = 460 mol X min-1 X mol enzyme-1, Km = 50 microM for 4-hydroxynonenal, Ki = 85 microM. When the heart was perfused with 4-hydroxynonenal, a marked decrease was observed in the intracellular GSH level, accompanied by an increase of glutathione S-conjugate of 4-hydroxynonenal in the heart. The rate of the conjugation reaction was more than 30 times the rate of the spontaneous reaction, the half-life of 4-hydroxynonenal in the heart being less than 4 s. The glutathione S-conjugate of 4-hydroxynonenal was released from the heart into the perfusion medium. Saturation kinetics were observed for the release with respect to the intracellular level of the S-conjugate (Vmax = 12 nmol X min-1 X g heart-1), and there was a competition by the S-conjugate for GSSG release. The release of the glutathione S-conjugate is considered as a carrier-mediated process and to be important not only in interorgan glutathione metabolism but also in diminishing the inhibitory effect of the S-conjugate on glutathione S-transferases and glutathione reductase.  相似文献   

12.
Heterologous expression of NodZ and NolL proteins in Rhizobium leguminosarum bv. viciae led to the production of acetyl fucosylated lipo-chitin oligosaccharides (LCOs), indicating that the NolL protein obtained from Mesorhizobium loti functions as an acetyl transferase. We show that the NolL-dependent acetylation is specific for the fucosyl penta-N-acetylglucosamine species. In addition, the NolL protein caused elevated production of LCOs. Efficient nodulation of Lotus japonicus by the NodZ/NolL-producing strain was demonstrated. Nodulation efficiency was further improved by the addition of the ethylene inhibitor L-alpha-(2-aminoethoxyvinyl) glycine (AVG).  相似文献   

13.
In yeast, OT consists of nine different subunits, all of which contain one or more predicted transmembrane segments. In yeast, five of these proteins are encoded by essential genes, Swp1p, Wbp1p, Ost2p, Ost1p and Stt3p. Four others are not essential Ost3p, Ost4p, Ost5p, Ost6p. All yeast OT subunits have been cloned and sequenced (Kelleher et al., 1992; 2003; Kelleher & Gilmore, 1997; Kumar et al., 1994; 1995; Breuer & Bause, 1995) and the structure of one of them, Ost4p, has been solved by NMR (Zubkov et al., 2004). Very recently, the preliminary crystal structure of the lumenal domain of an archaeal Stt3p homolog has been reported (Mayumi et al., 2007). Homologs of all OT subunits have been identified in higher eukaryotic organisms (Kelleher et al., 1992; 2003; Kumar et al., 1994; Kelleher & Gilmore, 1997).  相似文献   

14.
Trichoderma virens is a ubiquitous soil fungus successfully used in biological control due to its efficient colonization of plant roots. In fungi, 4-phosphopantetheinyl transferases (PPTases) activate enzymes involved in primary and secondary metabolism. Therefore, we cloned the PPTase gene ppt1 from T. virens and generated PPTase-deficient (?ppt1) and overexpressing strains to investigate the role of this enzyme in biocontrol and induction of plant defense responses. The ?ppt1 mutants were auxotrophic for lysine, produced nonpigmented conidia, and were unable to synthesize nonribosomal peptides. Although spore germination was severely compromised under both low and high iron availability, mycelial growth occurred faster than the wild type, and the mutants were able to efficiently colonize plant roots. The ?ppt1 mutants were unable of inhibiting growth of phytopathogenic fungi in vitro. Arabidopsis thaliana seedlings co-cultivated with wild-type T. virens showed increased expression of pPr1a:uidA and pLox2:uidA markers, which correlated with enhanced accumulation of salicylic acid (SA), jasmonic acid, camalexin, and resistance to Botrytis cinerea. Co-cultivation of A. thaliana seedlings with ?ppt1 mutants compromised the SA and camalexin responses, resulting in decreased protection against the pathogen. Our data reveal an important role of T. virens PPT1 in antibiosis and induction of SA and camalexin-dependent plant defense responses.  相似文献   

15.
16.
Bovine galactosyl transferase was found to utilize UDPglucose as a substrate and elicit disaccharide biosynthesis with glucose and N-acetylglucosamine as acceptors. The relative rate of glycosyl transferase with N-acetylglucosamine as acceptor was 0.3%, the rate for N-acetyllactosamine biosynthesis. This activity was also evidenced indirectly from NMR water proton relaxation experiments, and from Mn(II) ESR experiments. In direct experiments with radioactive UDPglucose, paper chromatography showed a product which migrated with cellobiose when glucose was the acceptor and a new, glucose-containing product which resulted when GlcNAc was the acceptor.Despite this marginally expanded specificity of the donor site, spin-label experiments with a covalently bound UDPgalactose analog reaffirmed the restrictive nature of the donor site against this non-glycosyl-like analog.  相似文献   

17.
A mixture of two pantetheine-free mutant fatty acid synthetases was dissociated and recombined invitro to form a hybrid apoenzyme complex. Invivo the corresponding Saccharomycescerevisiaefas-mutants exhibit interallelic complementation when crossed with each other and the enzyme synthesized in the resulting diploid contains pantetheine and exhibits overall fatty acid synthetase activity. Accordingly, the hybrid apoenzyme formed invitro could be activated to holo-fatty acid synthetase when incubated with coenzyme A and a partially purified yeast cell extract. The enzyme coenzyme A: fatty acid synthetase apoenzyme 4′-phosphopantetheine transferase has thus been identified in yeast. Further studies on the mechanism of fatty acid synthetase holoenzyme formation will now be possible.  相似文献   

18.
A new coenzyme A (CoA)-transferase from the anaerobe Clostridium aminobutyricum catalyzing the formation of 4-hydroxybutyryl-CoA from 4-hydroxybutyrate and acetyl-CoA is described. The enzyme was purified to homogeneity by standard techniques, including fast protein liquid chromatography under aerobic conditions. Its molecular mass was determined to be 110 kDa, and that of the only subunit was determined to be 54 kDa, indicating a homodimeric structure. Besides acetate and acetyl-CoA, the following substrates were detected (in order of decreasing kcat/Km): 4-hydroxybutyryl-CoA, butyryl-CoA and propionyl-CoA, vinyl-acetyl-CoA (3-butenoyl-CoA), and 5-hydroxyvaleryl-CoA. In an indirect assay the corresponding acids were also found to be substrates; however, DL-lactate, DL-2-hydroxybutyrate, DL-3-hydroxybutyrate, crotonate, and various dicarboxylates were not.  相似文献   

19.
After hypophysectomy, the level of glutathione transferase subunit 4 increases in the adrenal, as well as in the liver, as do those of several other forms of glutathione transferase. This increase in subunit 4 can subsequently be down-regulated by administration of adrenocorticotropin. The present investigation demonstrates that also in primary cultures of female rat adrenal cells an increase in the level of glutathione transferase subunit 4 (as shown by immunoblotting) occurs in the absence of adrenocorticotropin. When adrenocorticotropin or dibutyryladenosine 3',5'-phosphate was administered to these cells, a down-regulation of this enzyme level was observed, in agreement with the in vivo situation. This down-regulation was not affected by aminoglutethimide, an inhibitor of the cholesterol-side-chain-cleavage enzyme (cytochrome P-450scc) which is the rate-limiting step in the biosynthesis of steroids. Hence adrenal steroid production is not involved in the down-regulation of glutathione transferase subunit 4 by adrenocorticotropin.  相似文献   

20.
A new coenzyme A (CoA)-transferase from the anaerobe Clostridium aminobutyricum catalyzing the formation of 4-hydroxybutyryl-CoA from 4-hydroxybutyrate and acetyl-CoA is described. The enzyme was purified to homogeneity by standard techniques, including fast protein liquid chromatography under aerobic conditions. Its molecular mass was determined to be 110 kDa, and that of the only subunit was determined to be 54 kDa, indicating a homodimeric structure. Besides acetate and acetyl-CoA, the following substrates were detected (in order of decreasing kcat/Km): 4-hydroxybutyryl-CoA, butyryl-CoA and propionyl-CoA, vinyl-acetyl-CoA (3-butenoyl-CoA), and 5-hydroxyvaleryl-CoA. In an indirect assay the corresponding acids were also found to be substrates; however, DL-lactate, DL-2-hydroxybutyrate, DL-3-hydroxybutyrate, crotonate, and various dicarboxylates were not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号