首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Myristoylation by the myristoyl-CoA:protein N-myristoyltransferase (NMT) is an important lipid anchor modification of eukaryotic and viral proteins. Automated prediction of N-terminal N-myristoylation from the substrate protein sequence alone is necessary for large-scale sequence annotation projects but it requires a low rate of false positive hits in addition to a sufficient sensitivity.Our previous analysis of substrate protein sequence variability, NMT sequences and 3D structures has revealed motif properties in addition to the known PROSITE motif that are utilized in a new predictor described here. The composite prediction function (with separate ad hoc parameterization (a) for queries from non-fungal eukaryotes and their viruses and (b) for sequences from fungal species) consists of terms evaluating amino acid type preferences at sequences positions close to the N terminus as well as terms penalizing deviations from the physical property pattern of amino acid side-chains encoded in multi-residue correlation within the motif sequence. The algorithm has been validated with a self-consistency and two jack-knife tests for the learning set as well as with kinetic data for model substrates. The sensitivity in recognizing documented NMT substrates is above 95 % for both taxon-specific versions. The corresponding rate of false positive prediction (for sequences with an N-terminal glycine residue) is close to 0.5 %; thus, the technique is applicable for large-scale automated sequence database annotation. The predictor is available as public WWW-server with the URL http://mendel.imp.univie.ac.at/myristate/. Additionally, we propose a version of the predictor that identifies a number of proteolytic protein processing sites at internal glycine residues and that evaluates possible N-terminal myristoylation of the protein fragments.A scan of public protein databases revealed new potential NMT targets for which the myristoyl modification may be of critical importance for biological function. Among others, the list includes kinases, phosphatases, proteasomal regulatory subunit 4, kinase interacting proteins KIP1/KIP2, protozoan flagellar proteins, homologues of mitochondrial translocase TOM40, of the neuronal calcium sensor NCS-1 and of the cytochrome c-type heme lyase CCHL. Analyses of complete eukaryote genomes indicate that about 0.5 % of all encoded proteins are apparent NMT substrates except for a higher fraction in Arabidopsis thaliana ( approximately 0.8 %).  相似文献   

2.
3.
Atg8-family proteins are the best-studied proteins of the core autophagic machinery. They are essential for the elongation and closure of the phagophore into a proper autophagosome. Moreover, Atg8-family proteins are associated with the phagophore from the initiation of the autophagic process to, or just prior to, the fusion between autophagosomes with lysosomes. In addition to their implication in autophagosome biogenesis, they are crucial for selective autophagy through their ability to interact with selective autophagy receptor proteins necessary for the specific targeting of substrates for autophagic degradation. In the past few years it has been revealed that Atg8-interacting proteins include not only receptors but also components of the core autophagic machinery, proteins associated with vesicles and their transport, and specific proteins that are selectively degraded by autophagy. Atg8-interacting proteins contain a short linear LC3-interacting region/LC3 recognition sequence/Atg8-interacting motif (LIR/LRS/AIM) motif which is responsible for their interaction with Atg8-family proteins. These proteins are referred to as LIR-containing proteins (LIRCPs). So far, many experimental efforts have been carried out to identify new LIRCPs, leading to the characterization of some of them in the past 10 years. Given the need for the identification of LIRCPs in various organisms, we developed the iLIR database (https://ilir.warwick.ac.uk) as a freely available web resource, listing all the putative canonical LIRCPs identified in silico in the proteomes of 8 model organisms using the iLIR server, combined with a Gene Ontology (GO) term analysis. Additionally, a curated text-mining analysis of the literature permitted us to identify novel putative LICRPs in mammals that have not previously been associated with autophagy.  相似文献   

4.

Background  

Misfolding and aggregation of proteins into ordered fibrillar structures is associated with a number of severe pathologies, including Alzheimer's disease, prion diseases, and type II diabetes. The rapid accumulation of knowledge about the sequences and structures of these proteins allows using of in silico methods to investigate the molecular mechanisms of their abnormal conformational changes and assembly. However, such an approach requires the collection of accurate data, which are inconveniently dispersed among several generalist databases.  相似文献   

5.
Wang X 《RNA (New York, N.Y.)》2008,14(6):1012-1017
MicroRNAs (miRNAs) are short noncoding RNAs that are involved in the regulation of thousands of gene targets. Recent studies indicate that miRNAs are likely to be master regulators of many important biological processes. Due to their functional importance, miRNAs are under intense study at present, and many studies have been published in recent years on miRNA functional characterization. The rapid accumulation of miRNA knowledge makes it challenging to properly organize and present miRNA function data. Although several miRNA functional databases have been developed recently, this remains a major bioinformatics challenge to miRNA research community. Here, we describe a new online database system, miRDB, on miRNA target prediction and functional annotation. Flexible web search interface was developed for the retrieval of target prediction results, which were generated with a new bioinformatics algorithm we developed recently. Unlike most other miRNA databases, miRNA functional annotations in miRDB are presented with a primary focus on mature miRNAs, which are the functional carriers of miRNA-mediated gene expression regulation. In addition, a wiki editing interface was established to allow anyone with Internet access to make contributions on miRNA functional annotation. This is a new attempt to develop an interactive community-annotated miRNA functional catalog. All data stored in miRDB are freely accessible at http://mirdb.org.  相似文献   

6.

Background  

The insect exoskeleton or cuticle is a bi-partite composite of proteins and chitin that provides protective, skeletal and structural functions. Little information is available about the molecular structure of this important complex that exhibits a helicoidal architecture. Scores of sequences of cuticular proteins have been obtained from direct protein sequencing, from cDNAs, and from genomic analyses.  相似文献   

7.
8.
The AllergenPro database has developed a web-based system that will provide information about allergen in microbes, animals and plants. The database has three major parts and functions:(i) database list; (ii) allergen search; and (iii) allergenicity prediction. The database contains 2,434 allergens related information readily available in the database such as on allergens in rice microbes (712 records), animals (617 records) and plants (1,105 records). Furthermore, this database provides bioinformatics tools for allergenicity prediction. Users can search for specific allergens by various methods and can run tools for allergenicity prediction using three different methods.

Availability

The database is available for free at http://www.niab.go.kr/nabic/  相似文献   

9.
The structure of the Dutch Relational Archaeobotanical Database (RADAR) is presented. RADAR is a rather compact archaeobotanical database that is controlled centrally, but can be distributed to individual scientists. For this reason RADAR contains only the most important archaeobotanical data. For detailed archaeological, botanical and regional palaeoenvironmental information, links can be established with the national archaeological database (ARCHIS), the national botanical database (BBR) and the European Pollen Database (EPD). The software used for manipulation of the database is PARADOX for reasons of its highly visible nature, its control facilities for data entry and the ease of importing and exporting data from and to many other programs. The potential of the database is demonstrated with query examples.  相似文献   

10.
Sun H  Leverson JD  Hunter T 《The EMBO journal》2007,26(18):4102-4112
The function of small ubiquitin-like modifier (SUMO)-binding proteins is key to understanding how SUMOylation regulates cellular processes. We identified two related Schizosaccharomyces pombe proteins, Rfp1 and Rfp2, each having an N-terminal SUMO-interacting motif (SIM) and a C-terminal RING-finger domain. Genetic analysis shows that Rfp1 and Rfp2 have redundant functions; together, they are essential for cell growth and genome stability. Mammalian RNF4, an active ubiquitin E3 ligase, is an orthologue of Rfp1/Rfp2. Rfp1 and Rfp2 lack E3 activity but recruit Slx8, an active RING-finger ubiquitin ligase, through a RING-RING interaction, to form a functional E3. RNF4 complements the growth and genomic stability defects of rfp1rfp2, slx8, and rfp1rfp2slx8 mutant cells. Both the Rfp-Slx8 complex and RNF4 specifically ubiquitylate artificial SUMO-containing substrates in vitro in a SUMO binding-dependent manner. SUMOylated proteins accumulate in rfp1rfp2 double-null cells, suggesting that Rfp/Slx8 proteins may promote ubiquitin-dependent degradation of SUMOylated targets. Hence, we describe a family of SIM-containing RING-finger proteins that potentially regulates eukaryotic genome stability through linking SUMO-interaction with ubiquitin conjugation.  相似文献   

11.
Recent progress in structure determination techniques has led to a significant growth in the number of known membrane protein structures, and the first structural genomics projects focusing on membrane proteins have been initiated, warranting an investigation of appropriate bioinformatics strategies for optimal structural target selection for these molecules. What determines a membrane protein fold? How many membrane structures need to be solved to provide sufficient structural coverage of the membrane protein sequence space? We present the CAMPS database (Computational Analysis of the Membrane Protein Space) containing almost 45,000 proteins with three or more predicted transmembrane helices (TMH) from 120 bacterial species. This large set of membrane proteins was subjected to single‐linkage clustering using only sequence alignments covering at least 40% of the TMH present in a given family. This process yielded 266 sequence clusters with at least 15 members, roughly corresponding to membrane structural folds, sufficiently structurally homogeneous in terms of the variation of TMH number between individual sequences. These clusters were further subdivided into functionally homogeneous subclusters according to the COG (Clusters of Orthologous Groups) system as well as more stringently defined families sharing at least 30% identity. The CAMPS sequence clusters are thus designed to reflect three main levels of interest for structural genomics: fold, function, and modeling distance. We present a library of Hidden Markov Models (HMM) derived from sequence alignments of TMH at these three levels of sequence similarity. Given that 24 out of 266 clusters corresponding to membrane folds already have associated known structures, we estimate that 242 additional new structures, one for each remaining cluster, would provide structural coverage at the fold level of roughly 70% of prokaryotic membrane proteins belonging to the currently most populated families. Proteins 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

12.
N-terminal N-myristoylation is a lipid anchor modification of eukaryotic and viral proteins targeting them to membrane locations, thus changing the cellular function of modified proteins. Protein myristoylation is critical in many pathways; e.g. in signal transduction, apoptosis, or alternative extracellular protein export. The myristoyl-CoA:protein N-myristoyltransferase (NMT) recognizes the sequence motif of appropriate substrate proteins at the N terminus and attaches the lipid moiety to the absolutely required N-terminal glycine residue. Reliable recognition of capacity for N-terminal myristoylation from the substrate protein sequence alone is desirable for proteome-wide function annotation projects but the existing PROSITE motif is not practical, since it produces huge numbers of false positive and even some false negative predictions.As a first step towards a new prediction method, it is necessary to refine the sequence motif coding for N-terminal N-myristoylation. Relying on the in-depth study of the amino acid sequence variability of substrate proteins, on binding site analyses in X-ray structures or 3D homology models for NMTs from various taxa, and on consideration of biochemical data extracted from the scientific literature, we found indications that, at least within a complete substrate protein, the N-terminal 17 protein residues experience different types of variability restrictions. We identified three motif regions: region 1 (positions 1-6) fitting the binding pocket; region 2 (positions 7-10) interacting with the NMT's surface at the mouth of the catalytic cavity; and region 3 (positions 11-17) comprising a hydrophilic linker. Each region was characterized by physical requirements to single sequence positions or groups of positions regarding volume, polarity, backbone flexibility and other typical properties of amino acids (http://mendel.imp.univie.ac.at/myristate/). These specificity differences are confined partly to taxonomic ranges and are proposed for the design of NMT inhibitors in pathogenic fungal and protozoan systems including Aspergillus fumigatus, Leishmania major, Trypanosoma cruzi, Trypanosoma brucei, Giardia intestinalis, Entamoeba histolytica, Pneumocystis carinii, Strongyloides stercoralis and Schistosoma mansoni. An exhaustive search for NMT-homologues led to the discovery of two putative entomopoxviral NMTs.  相似文献   

13.
Recent advances in electron cryomicroscopy instrumentation and single particle reconstruction have created opportunities for high-throughput and high-resolution three-dimensional (3D) structure determination of macromolecular complexes. However, it has become impractical and inefficient to rely on conventional text file data management and command-line programs to organize and process the increasing numbers of image data required in high-resolution studies. Here, we present a distributed relational database for managing complex datasets and its integration into our high-resolution software package IMIRS (Image Management and Icosahedral Reconstruction System). IMIRS consists of a complete set of modular programs for icosahedral reconstruction organized under a graphical user interface and provides options for user-friendly, step-by-step data processing as well as automatic reconstruction. We show that the integration of data management with processing in IMIRS automates the tedious tasks of data management, enables data coherence, and facilitates information sharing in a distributed computer and user environment without significantly increasing the time of program execution. We demonstrate the applicability of IMIRS in icosahedral reconstruction toward high resolution by using it to obtain an 8-A 3D structure of an intermediate-sized dsRNA virus.  相似文献   

14.
15.
We present a robust, fully automatable technology platform that includes computer software for the detailed analysis of low femtomoles of N-linked sugars released from glycoproteins. Features include (i) sample immobilization in 96-well plates, glycan release, and fluorescent labeling; (ii) quantitative HPLC analysis, including monosaccharide sequence, linkage, and arm-specific information for charged and neutral glycans; (iii) automatic structural assignment of peaks from HPLC profiles via web-based software that accesses our database (GlycoBase) of more than 350 N-glycan structures, including 117 present in the human serum glycome; and (iv) software (autoGU) that progressively analyzes data from exoglycosidase digestions to produce a refined list of final structures. The N-glycans from a plate of 96 samples can be released and purified in 2 or 3 days and profiled in 2 days. This strategy can be used for (i) identification and screening of disease biomarkers and (ii) monitoring the production of therapeutic glycoproteins, allowing optimization of production conditions. This technology is also suitable for preparing released glycans for other analytical techniques. Here we demonstrate its application to rheumatoid arthritis using 5 μl of patient serum.  相似文献   

16.
17.
In addition to storing microbes, culture collections in industry, government or universities manage a vast and continuously expanding library of information on strain history and properties. An efficient and cost-effective computer database system is required for entering, analyzing and searching these data. This report describes the utility and features of a comprehensive database which consists of a commercially available relational database system combined with customized screens for data entry, viewing and report generation. The application was developed using Microsoft Access and Visual Basic to operate in the Windows environment on a local area network. Received 18 June 1997/ Accepted in revised form 21 November 1997  相似文献   

18.
During the last decade there has been a great increase in the number of noncoding RNA genes identified, including new classes such as microRNAs and piRNAs. There is also a large growth in the amount of experimental characterization of these RNA components. Despite this growth in information, it is still difficult for researchers to access RNA data, because key data resources for noncoding RNAs have not yet been created. The most pressing omission is the lack of a comprehensive RNA sequence database, much like UniProt, which provides a comprehensive set of protein knowledge. In this article we propose the creation of a new open public resource that we term RNAcentral, which will contain a comprehensive collection of RNA sequences and fill an important gap in the provision of biomedical databases. We envision RNA researchers from all over the world joining a federated RNAcentral network, contributing specialized knowledge and databases. RNAcentral would centralize key data that are currently held across a variety of databases, allowing researchers instant access to a single, unified resource. This resource would facilitate the next generation of RNA research and help drive further discoveries, including those that improve food production and human and animal health. We encourage additional RNA database resources and research groups to join this effort. We aim to obtain international network funding to further this endeavor.  相似文献   

19.
Beta-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. Although sequence motifs have been studied in alpha-helical membrane proteins and have been shown to play important roles in their assembly, it is not clear whether over-represented motifs and under-represented anti-motifs exist in beta-barrel membrane proteins. We have developed probabilistic models to identify sequence motifs of residue pairs on the same strand separated by an arbitrary number of residues. A rigorous statistical model is essential for this study because of the difficulty associated with the short length of the strands and the small amount of structural data. By comparing to the null model of exhaustive permutation of residues within the same beta-strand, propensity values of sequence patterns of two residues and p-values measuring statistical significance are calculated exactly by several analytical formulae we have developed or by enumeration. We find that there are characteristic sequence motifs and antimotifs in transmembrane (TM) beta-strands. The amino acid Tyr plays an important role in several such motifs. We find a general dichotomy consisting of favorable Aliphatic-Tyr sequence motifs and unfavorable Tyr-Aliphatic antimotifs. Tyr is also part of a terminal motif, YxF, which is likely to be important for chaperone binding. Our results also suggest several experiments that can help to elucidate the mechanisms of in vitro and in vivo folding of beta-barrel membrane proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号