首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of the core oligosaccharides of the lipopolysaccharides (LPS) from Actinobacillus pleuropneumoniae serotypes 1, 2, 5a and 5b were elucidated. The LPS's were subjected to a variety of degradative procedures. The structures of the purified products were established by monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. The following structures for the core oligosaccharides were determined on the basis of the combined data from these experiments. [carbohydrate formula see text] For serotype 1: R is (1S)-GalaNAc-(1-->4,6)-alpha-Gal II-(1-->3)-beta-Gal I-(1-->, and R' is H For serotype 2: R is beta-Glc III-(1-->, and R' is D-alpha-D-Hep V-(1--> For serotypes 5a and 5b: R is H and R' is D-alpha-D-Hep V-(1--> All oligosaccharides elaborated a conserved inner core structure, as illustrated. All sugars were in the pyranose ring form apart from the open-chain N-acetylgalactosamine, the identification of which in the serotype 1 LPS was of interest.  相似文献   

2.
The LPS from Shewanella oneidensis strain MR-1 was analysed by chemical methods and by NMR spectroscopy and mass spectrometry. The LPS contained no polysaccharide O-chain, and its carbohydrate backbone had the following structure: (1S)-GalNAco-(1-->4,6)-alpha-Gal-(1-->6)-alpha-Gal-(1-->3)-alpha-Gal-(1-P-3)-alpha-DDHep-(1-->5)-alpha-8-aminoKdo4R-(2-->6)-beta-GlcN4P-(1-->6)-alpha-GlcN1P, where R is P or EtNPP. There are several novel aspects to this LPS. It contains a novel linking unit between the core polysaccharide and lipid A moieties, namely 8-amino-3,8-dideoxy-D-manno-octulosonic acid (8-aminoKdo) and a residue of 2-acetamido-2-deoxy-D-galactose (N-acetylgalactosamine, GalNAco) in an open-chain form, linked as cyclic acetal to O-4 and O-6 of D-galactopyranose. The structure contains a phosphodiester linkage between the alpha-D-galactopyranose and D-glycero-D-manno-heptose (DDHep) residues.  相似文献   

3.
Analysis of the core part of the LPS from several strains of Proteus revealed that P. penneri strains 2, 11, 19, 107, and P. vulgaris serotypes 04 and 08 have the same structure with a new type of linkage between monosaccharidesan open-chain acetal--that was previously determined for P. vulgaris OX2 and P. penneri 17. The LPS from P. penneri strain 40 contains the same structure substituted with one additional monosaccharide: [molecular structure: see text] where (1S)-GalaNAc1 is a residue of N-acetyl-D-galactosamine in the open-chain form. It is connected as a cyclic acetal to positions 4 and 6 of the galactosamine residue having a free amino group. All other sugars are in the pyranose form.  相似文献   

4.
A reducing tetrasaccharide of the following structure was released by mild acid hydrolysis of R-type LPS from Shewanella putrefaciens strains NCIMB 10472 and 10473. The same tetrasaccharide containing acetal-linked open-chain GalNAc is present in the core region of LPS from S. oneidensis strain MR-1 and may be characteristic of genomic groups II and III of S. putrefaciens and related strains. (1S)-d-GalaNAc-(1-->4,6)-alpha-d-Galp-(1-->6)-alpha-d-Galp-(1-->3)-d-Gal.  相似文献   

5.
Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of L-glycero-D-manno-heptose, D-glycero-D-manno-heptose, glucose, 3-deoxy-D-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid.  相似文献   

6.
Analysis of the core part of the LPS from several strains of Proteus revealed that P. penneri strains 2, 11, 19, 107, and P. vulgaris serotypes O4 and O8 have the same structure with a new type of linkage between monosaccharides–an open-chain acetal — that was previously determined for P. vulgaris OX2 and P. penneri 17. The LPS from P. penneri strain 40 contains the same structure substituted with one additional monosaccharide:
Full-size image (5K)
where (1S)-GalaNAc1 is a residue of N-acetyl- -galactosamine in the open-chain form. It is connected as a cyclic acetal to positions 4 and 6 of the galactosamine residue having a free amino group. All other sugars are in the pyranose form.  相似文献   

7.
S Das  M Ramm  H Kochanowski    S Basu 《Journal of bacteriology》1994,176(21):6550-6557
The lipopolysaccharide (LPS) was isolated from Pseudomonas syringae pv. coriandricola W-43 by hot phenol-water extraction. Rhamnose and 3-N-acetyl-3-deoxyfucose were found to be the major sugar constituents of the LPS together with N-acetylglucosamine, N-acetylgalactosamine, heptose, and 3-deoxy-D-manno-octulosonic acid (Kdo). The main fatty acids of lipid A of the LPS were 3-OH-C:10, C12:0, 2-OH-C12:0, and 3-OH-C12:0. The O-specific polysaccharide liberated from the LPS by mild-acid hydrolysis was purified by gel permeation chromatography. The compositional analysis of the O-specific polysaccharide revealed the presence of L-rhamnose and 3-N-acetyl-3-deoxy-D-fucose in a molar ratio of 4:1. The primary structure of the O-specific polysaccharide was established by methylation analysis together with 1H and 13C nuclear magnetic resonance spectroscopy, including two-dimensional shift-correlated and one-dimensional nuclear Overhauser effect spectroscopy. The polysaccharide moiety was found to consist of a tetrasaccharide rhamnan backbone, and 3-N-acetyl-3-deoxy-D-fucose constitutes the side chain of the branched pentasaccharide repeating unit of the polysaccharide.  相似文献   

8.
Campylobacter jejuni produces both lipooligosaccharide (LOS) and a higher-molecular-weight polysaccharide that is believed to form a capsule. The role of these surface polysaccharides in C. jejuni-mediated enteric disease is unclear; however, epitopes associated with the LOS are linked to the development of neurological complications. In Escherichia coli and Salmonella enterica serovar Typhimurium the waaF gene encodes a heptosyltransferase, which catalyzes the transfer of the second L-glycero-D-manno-heptose residue to the core oligosaccharide moiety of lipopolysaccharide (LPS), and mutation of waaF results in a truncated core oligosaccharide. In this report we confirm experimentally that C. jejuni gene Cj1148 encodes the heptosyltransferase II enzyme, WaaF. The Campylobacter waaF gene complements an S. enterica serovar Typhimurium waaF mutation and restores the ability to produce full-sized lipopolysaccharide. To examine the role of WaaF in C. jejuni, waaF mutants were constructed in strains NCTC 11168 and NCTC 11828. Loss of heptosyltransferase activity resulted in the production of a truncated core oligosaccharide, failure to bind specific ligands, and loss of serum reactive GM(1), asialo-GM(1), and GM(2) ganglioside epitopes. The mutation of waaF did not affect the higher-molecular-weight polysaccharide supporting the production of a LOS-independent capsular polysaccharide by C. jejuni. The exact structural basis for the truncation of the core oligosaccharide was verified by comparative chemical analysis. The NCTC 11168 core oligosaccharide differs from that known for HS:2 strain CCUG 10936 in possessing an extra terminal disaccharide of galactose-beta(1,3) N-acetylgalactosamine. In comparison, the waaF mutant possessed a truncated molecule consistent with that observed with waaF mutants in other bacterial species.  相似文献   

9.
A new approach for the separation and inline characterization of lipopolysaccharide (LPS) related compounds has been developed. The separation was based on the difference in the number of charged phosphate and ethanolamine groups, as non-stoichiometric substituents, on the polysaccharide backbone, and was achieved with reverse phase ion-paring chromatography (RPIP-HPLC). Tributylamine was used as an ion-pair reagent. In the conditions used in this study, tributylammonium then binds to the LPS related compounds through the negatively charged phosphate groups. This changes the hydrophobicity of the analytes at different positions and allows for separation based on both the number and position of the substituents on the analyte. The RPIP-HPLC was found to be effective for the separation of the O,N-deacylated derivative (deON) and polysaccharide portion (PS) from the LPS of Escherichia coli C strain. Post-column fluorescence derivatization (FLD), using sodium periodate and taurine, was used to detect the separated LPS related species. On the other hand, the separated species were also detected by direct infusion into the ESI-Q-MS using a volatile ammonium acetate buffer rather than the more traditional potassium phosphate buffer. The signal to noise ratio (S/N ratio) was low for the total ion chromatogram, however, high S/N ratios as well as good resolution were attained by selected ion monitoring (SIM) using m/z numbers corresponding to species with different numbers of non-stoichiometric substituents. Five species for deON and ten species for PS were clearly identified on the SIM chromatogram on the RPIP-HPLC/ESI-Q-MS. Accordingly, the present method allows for the effective separation and inline identification of the species corresponding to the diverse non-stoichiometric substitutions in LPS related compounds.  相似文献   

10.
The lipopolysaccharide (LPS) O-antigen of Yersinia enterocolitica serotype O:8 is formed by branched pentasaccharide repeat units that contain N-acetylgalactosamine (GalNAc), L-fucose (Fuc), D-galactose (Gal), D-mannose (Man), and 6-deoxy-D-gulose (6d-Gul). Its biosynthesis requires at least enzymes for the synthesis of each nucleoside diphosphate-activated sugar precursor; five glycosyltransferases, one for each sugar residue; a flippase (Wzx); and an O-antigen polymerase (Wzy). As this LPS shows a characteristic preferred O-antigen chain length, the presence of a chain length determinant protein (Wzz) is also expected. By targeted mutagenesis, we identify within the O-antigen gene cluster the genes encoding Wzy and Wzz. We also present genetic and biochemical evidence showing that the gene previously called galE encodes a UDP-N-acetylglucosamine-4-epimerase (EC 5.1.3.7) required for the biosynthesis of the first sugar of the O-unit. Accordingly, the gene was renamed gne. Gne also has some UDP-glucose-4-epimerase (EC 5.1.3.2) activity, as it restores the core production of an Escherichia coli K-12 galE mutant. The three-dimensional structure of Gne was modeled based on the crystal structure of E. coli GalE. Detailed structural comparison of the active sites of Gne and GalE revealed that additional space is required to accommodate the N-acetyl group in Gne and that this space is occupied by two Tyr residues in GalE whereas the corresponding residues present in Gne are Leu136 and Cys297. The Gne Leu136Tyr and Cys297Tyr variants completely lost the UDP-N-acetylglucosamine-4-epimerase activity while retaining the ability to complement the LPS phenotype of the E. coli galE mutant. Finally, we report that Yersinia Wzx has relaxed specificity for the translocated oligosaccharide, contrary to Wzy, which is strictly specific for the O-unit to be polymerized.  相似文献   

11.
A glycopeptide containing 69% carbohydrate was isolated from human gastric juice. The complex was found to be homogeneous and to have mol.wt. 9600. The glycopeptide consisted of a protein core to which were linked, by O-glycosidic linkages to threonine and N-glycosidic linkages, carbohydrate side chains composed of N-acetylgalactosamine, N-acetylglucosamine, galactose, mannose, fucose and sialic acid, in the proportions 2:10:7:4:12:1.  相似文献   

12.
A gene, cpaA, with similarity to calcium proton antiporters has been identified adjacent to lpcAB in Rhizobium leguminosarum. LpcA is a galactosyl transferase while LpcB is a 2-keto-3-deoxyoctonate transferase, both of which are required to form the lipopolysaccharide (LPS) core in R. leguminosarum. Mutations in lpcAB result in a rough LPS phenotype with a requirement for elevated calcium concentrations to allow growth, suggesting that truncation of the LPS core exposes a highly negatively charged molecule. This is consistent with the LPS core being one of the main sites for binding calcium in the Gram-negative outer membrane. Strain RU1109 (cpaA::Tn5-lacZ) has a normal LPS layer, as measured by silver staining and Western blotting. This indicates that cpaA mutants are not grossly affected in their LPS layer. LacZ fusion analysis indicates that cpaA is constitutively expressed and is not directly regulated by the calcium concentration. Over-expression of cpaA increased the concentration of calcium required for growth, consistent with CpaA mediating calcium export from the cytosol. The location of lpcA, lpcB and cpaA as well as the phenotype of lpcB mutants suggests that CpaA might provide a specific export pathway for calcium to the LPS core.  相似文献   

13.
The waa gene cluster is responsible for the biosynthesis of the lipopolysaccharide (LPS) core region in Escherichia coli and Salmonella: Homologs of the waaZ gene product are encoded by the waa gene clusters of Salmonella enterica and E. coli strains with the K-12 and R2 core types. Overexpression of WaaZ in E. coli and S. enterica led to a modified LPS structure showing core truncations and (where relevant) to a reduction in the amount of O-polysaccharide side chains. Mass spectrometry and nuclear magnetic resonance spectroscopy were used to determine the predominant LPS structures in an E. coli isolate with an R1 core (waaZ is lacking from the type R1 waa gene cluster) with a copy of the waaZ gene added on a plasmid. Novel truncated LPS structures, lacking up to 3 hexoses from the outer core, resulted from WaaZ overexpression. The truncated molecules also contained a KdoIII residue not normally found in the R1 core.  相似文献   

14.
The core structure of Citrobacter PCM 1487 lipopolysaccharide has been established using methylation analysis/mass spectrometry, chemical degradations and one- and two-dimensional 1H-NMR spectroscopy at 500 MHz. 1H-NMR assignments are given for all sugar components of the core oligosaccharide. In the formula shown below, the alternative locations of branch terminal heptose (LDHep) and diphosphorylethanolamine (PPEtN) residues are marked by dashed lines; dOclA stands for 3-deoxy-D-manno-octulosonic acid. (Formula: see text). The sample of the core oligosaccharide showed some microheterogeneity due to a slightly incomplete substitution by terminal N-acetylgalactosamine and a partial splitting of diphosphorylethanolamine residues.  相似文献   

15.
Lipopolysaccharide (LPS) expressed by isolates of Pseudomonas aeruginosa from cystic fibrosis patients lacks the O-polysaccharide chain but the degree to which the rest of the molecule changes has not been determined. We analyzed, for the first time, the core structure of an LPS from a rough, cystic fibrosis isolate of P. aeruginosa. The products of mild acid hydrolysis and strong alkaline degradation of the LPS were studied by ESI MS, MALDI MS, and NMR spectroscopy. The following structure was determined for the highest-phosphorylated core-lipid A backbone oligosaccharide isolated after alkaline deacylation of the LPS: [structure: see text] where Kdo and Hep are 3-deoxy-D-manno-octulosonic acid and L-glycero-D-manno-heptose, respectively; all sugars are in the pyranose form and have the D configuration unless stated otherwise. The outer core region occurs as two isomeric glycoforms differing in the position of rhamnose (Rha). The inner core region carries four phosphorylation sites at two Hep residues, HepI being predominantly bisphosphorylated and HepII monophosphorylated. In the intact LPS, both Hep residues carry monophosphate and diphosphate groups in nonstoichiometric quantities, GalN is N-acylated by an L-alanyl group, HepII is 7-O-carbamoylated, and the outer core region is nonstoichiometrically O-acetylated at four sites. Therefore, the switch to the LPS-rough phenotype in cystic fibrosis isolates of P. aeruginosa is not accompanied by losses of core monosaccharide, phosphate or acyl components. The exact positions of the O-acetyl groups and the role of the previously undescribed O-acetylation in the LPS core of P. aeruginosa remain to be determined.  相似文献   

16.
Low-Mr lipopolysaccharides (LPS) of Campylobacter jejuni reference strains for serotypes O:1, O:4, O:23, and O:36 were examined through the liberation of core oligosaccharides by mild acid cleavage of the ketosidic linkage of 3-deoxy-D-manno-2-octulosonic acid residues to the lipid A moiety. The liberated oligosaccharides were examined for chemical structure by compositional analysis and methylated linkage analysis in conjunction with fast atom bombardment-mass spectrometry of permethylated oligosaccharide derivatives. The results showed (i) that the LPS contained short oligosaccharide chains of branched nonrepetitive structure, to many of which N-acetylneuraminic acid residues remained attached by 2----3 linkages to 4-linked D-galactose residues in the core structure; (ii) that serotypical differences, which are not readily defined through qualitatively similar compositions, are clearly reflected in variations in linkage types and sequences of sugar residues in the outer core attached to an inner region of invariable structure; but (iii) that the presence or absence of NeuAc residues does not appear to be a basis for serotypical differences. The results also showed that oligosaccharide chains from LPS of serotypes O:1 and O:4 are distinctly different and are distinct again from those of the cross-reacting serotypes O:23 and O:36, between whose core oligosaccharide chains no differences were found. It is concluded that the structurally variable low-Mr LPS from C. jejuni show greater similarities to the lipooligosaccharides from Neisseria spp. than to the highly conserved core regions of Salmonella species. Those strains (serotypes O:23 and O:36) which also furnish high-Mr LPS are unique among gram-negative bacteria in possessing both low-Mr molecules of the Neisseria lipooligosaccharide type and high-Mr LPS of the Salmonella smooth type.  相似文献   

17.
The antigen specificity of two immunoprotective monoclonal antibodies derived from mice immunized with Escherichia coli 0111:B4 bacteria and boosted with purified lipopolysaccharide (LPS) were investigated. One of the antibodies, B7, was shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunostaining to bind to the O-antigen containing LPS species, whereas the other antibody, 5B10, reacted with both O-antigen containing homologs and the O-antigen-deficient LPS. 5B10 did not bind to LPS from E. coli J5, an Rc mutant of E. coli 0111:B4 that lacks both the O-antigen and outer core sugars. 5B10 did not cross-react with LPS from several other E. coli strains. Thus 5B10 appeared to recognize a type-specific epitope in the outer core of LPS exclusive of Rc determinants. The monoclonal antibody specific for the polymeric O-antigen is of the IgG3 subclass, and the monoclonal antibody 5B10 specific for the outer core of LPS is an IgG2a. Although B7 and 5B10 were equally able to protect mice from a lethal challenge of E. coli 0111:B4 organisms, the outer core-specific IgG2a antibody was much more efficient at mediating the binding of human complement C3 than the O-antigen-specific IgG3 monoclonal antibody.  相似文献   

18.
The lipopolysaccharides (LPS) from Escherichia coli rough mutant strains F470 (R1 core type) and F576 (R2 core type) were deacylated yielding in each case a mixture of oligosaccharides with one predominant product which was isolated using high-performance anion-exchange chromatography. In addition, one oligosaccharide present in minor quantities was isolated from LPS of E. coli strain F576 (R2 core type). The structures of the oligosaccharides were determined by chemical analyses and NMR spectroscopic experiments. Furthermore, de-O-acylated and dephosphorylated LPS preparations were investigated by fast-atom bombardment and collision induced dissociation tandem mass spectrometry. The combined data allow us to deduce the following carbohydrate backbones of the E. coli R1 and R2 core types which share the following structure (Scheme 1): but differ in the substituents R1 and R2 which for the R1 core type are predominantly: and to a minor extent: and for the R2 core type predominantly: and to a minor extent: in which all sugars are d-pyranoses (l,d-Hep, lglycerodmanno-heptopyranose; P, phosphate).  相似文献   

19.
The two asparagine-linked glycosylation sites of recombinant coagulation factor VIIa have been characterized by glycosidase digestions, size-exclusion chromatography (SEC), and mass spectrometry (MS). Nine structures were characterized as core fucosylated bi- and triantennary structures with 0-3 sialic-acid residues, which were alpha2-3 linked to galactose exclusively. Three of the structures had one or two galactose residues substituted by N-acetylgalactosamine. Significant differences were found between the oligosac-charide profiles for the two glycosylation sites in rFVIIa. At Asn322, the degree of sialylation was lower and higher amounts of structures containing N-acetylgalactosamine were found compared to Asn l45.  相似文献   

20.
Four R mutants of P. mirabilis were isolated. The composition of their degraded polysaccharides (PS) obtained from the respective lipopolysaccharides (LPS) as well as the composition and properties of the PS-fractions separated by column chromatography were examined. The results were compared with those obtained with PS of the wild type. One of the mutants could be classified as an Ra-type mutant, presenting a complete LPS core. This polysaccharide core contains: galacturonic acid, glucosamine, glucose, D-glycero-D-mannoheptose, L-glycero-D-mannoheptose in a molar ratio of 1 : 1 : 1 : 1 : 2 and 2-keto-3-deoxyoctonate. Taking into consideration the common sugars described previously in the LPS chemotypes of P. hauseri, the composition of the complete core region mentioned above represents the LPS core part of all the chemotypes, containing two different heptoses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号