首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cell-free extract from blue-green alga Anacystis nidulans contains enzymes which repair in vitro the transforming activity of gamma-irradiated Bacillus subtilis DNA. The level of restoration of the transforming activity depends on the protein concentration in the reaction mixture, the duration of incubation and on the dose of irradiation. The repair of gamma-induced lesions is most efficient in the presence of magnesium ions, NAD and ATP. The present data indicate that the repair of transforming DNA is performed with the participation of DNA polymerase and polynucleotide ligase which function in the cell-free extract of algae.  相似文献   

2.
We report that Haemophilus influenzae encodes a 268 amino acid ATP-dependent DNA ligase. The specificity of Haemophilus DNA ligase was investigated using recombinant protein produced in Escherichia coli. The enzyme catalyzed efficient strand joining on a singly nicked DNA in the presence of magnesium and ATP (Km = 0.2 microM). Other nucleoside triphosphates or deoxynucleoside triphosphates could not substitute for ATP. Haemophilus ligase reacted with ATP in the absence of DNA substrate to form a covalent ligase-adenylate intermediate. This nucleotidyl transferase reaction required a divalent cation and was specific for ATP. The Haemophilus enzyme is the first example of an ATP-dependent DNA ligase encoded by a eubacterial genome. It is also the smallest member of the covalent nucleotidyl transferase superfamily, which includes the bacteriophage and eukaryotic ATP-dependent polynucleotide ligases and the GTP-dependent RNA capping enzymes.  相似文献   

3.
We searched for nucleotide excision repair in human cell-free extracts using two assays: damage-specific incision of DNA (the nicking assay) and damage-stimulated DNA synthesis (the repair synthesis assay). HeLa cell-free extract prepared by the method of Manley et al. (1980) has a weak nicking activity on UV irradiated DNA and the nicking is only slightly reduced when pyrimidine dimers are eliminated from the substrate by DNA photolyase. In contrast to the nicking assay, the extract gives a strong signal with UV irradiated substrate in the repair synthesis assay. The repair synthesis activity is ATP dependent and is reduced by about 50% by prior treatment of the substrate with DNA photolyase indicating that this fraction of repair synthesis is due to removal of pyrimidine dimers by nucleotide excision. Psoralen and cisplatin adducts which are known to be removed by nucleotide excision repair also elicited repair synthesis activity 5-10 fold above the background synthesis. When M13RF DNA containing a uniquely placed psoralen adduct was used in the reaction, complete repair was achieved in a fraction of molecules as evidenced by the restoration of psoralen inactivated KpnI restriction site. This activity is absent in xeroderma pigmentosum group A cells. We conclude that our cell-free extract contains the human nucleotide excision repair enzyme activity.  相似文献   

4.
C K Ho  J L Van Etten    S Shuman 《Journal of virology》1997,71(3):1931-1937
We report that Chlorella virus PBCV-1 encodes a 298-amino-acid ATP-dependent DNA ligase. The PBCV-1 enzyme is the smallest member of the covalent nucleotidyl transferase superfamily, which includes the ATP-dependent polynucleotide ligases and the GTP-dependent RNA capping enzymes. The specificity of PBCV-1 DNA ligase was investigated by using purified recombinant protein. The enzyme catalyzed efficient strand joining on a singly nicked DNA in the presence of magnesium and ATP (Km, 75 microM). Other nucleoside triphosphates or deoxynucleoside triphosphates could not substitute for ATP. PBCV-1 ligase was unable to ligate across a 2-nucleotide gap and ligated poorly across a 1-nucleotide gap. A native gel mobility shift assay showed that PBCV-1 DNA ligase discriminated between nicked and gapped DNAs at the substrate-binding step. These findings underscore the importance of a properly positioned 3' OH acceptor terminus in substrate recognition and reaction chemistry.  相似文献   

5.
Two modes of excision repair in toluene-treated Escherichia coli.   总被引:2,自引:2,他引:0       下载免费PDF全文
In toluene-treated Escherichia coli incision breaks accumulate during post-irradiation incubation in the presence of adenosine 5'-triphosphate (ATP). It is shown that incised deoxyribonucleic acid (DNA) is converted to high-molecular-weight DNA during reincubation in the presence of the four deoxyribonucleoside triphosphates (dNTP's) and nicotinamide adenine dinucleotide (NAD). This restitution process is ATP independent and N-ethylmaleimide insensitive and takes place only in polA+ strains. It is defective in strains carrying a mutation in the 5' leads to 3' exonucleolytic activity associated with DNA polymerase I. Repair of accumulated incision breaks differs from repair in which all the steps of the excision repair process occur simultaneously or in rapid succession. The latter is observed if toluene-treated E. coli are incubated immediately after irradiation in the presence of the four dNTP's, NAD, and ATP. It is shown that under these conditions dimer excision occurs to a larger extent than during repair of accumulated incision breaks and that, except in strains defective in polynucleotide ligase, incision breaks do not accumulate. This consecutive mode of repair is detectable in polA+ strains and at low doses also in polA mutants.  相似文献   

6.
Summary Toluene treated cells have been used to study the processes of DNA synthesis and DNA degradation in ultra-violet irradiated Escherichia coli K12. Synthesis and degradation are both shown to occur extensively if polynucleotide ligase is inhibited, and to occur to a much lesser extent if ligase activity is optimal. Extensive UV-induced DNA synthesis in toluene-treated cells requires ATP for the initial incision step, and DNA polymerase I. Extensive degradation also depends on the early ATP-dependent incision step, and the subsequent degradation shows a partial requirement for ATP. Curtailment of degradation by ligase requires DNA polymerase activity, but is not dependent upon DNA polymerase I. Apparently this process can be carried out with equal facility by either DNA polymerase II or polymerase III. These observations suggest that extensive DNA polymerase I-dependent repair synthesis and extensive DNA degradation are facets of two divergent pathways of excision repair, both of which depend upon the early uvrABC determined ATP-dependent incision step.  相似文献   

7.
Summary The DNA polymerase of Ustilago maydis is stimulated by a DNA binding protein from the same organism. Analysis of this stimulation shows that there is an increase in affinity for both substrates of the reaction. The apparent Km for deoxynucleoside triphosphates is decreased 3 fold, and that for denatured DNA by 4 fold. In both cases the maximum velocity (Vmax) is increased 1.2 to 1.4 fold. It is suggested that the variability in the affinity of the enzyme for deoxynucleoside triphosphates mediated by the binding protein may provide the basis for the UV sensitivity of pyrimidine auxotrophs in this organism.  相似文献   

8.
Late induction of human DNA ligase I after UV-C irradiation.   总被引:4,自引:2,他引:2       下载免费PDF全文
We have studied the regulation of DNA ligase I gene expression in UV-C irradiated human primary fibroblasts. An increase of approximately 6-fold both in DNA ligase I messenger and activity levels was observed 24 h after UV treatment, when nucleotide excision repair (NER) is no longer operating. DNA ligase I induction is serum-independent and is controlled mainly by the steady-state level of its mRNA. The activation is a function of the UV dose and occurs at lower doses in cells showing UV hypersensitivity. No increase in replicative DNA polymerase alpha activity was found, indicating that UV induction of DNA ligase I occurs through a pathway that differs from the one causing activation of the replication machinery. These data suggest that DNA ligase I induction could be linked to the repair of DNA damage not removed by NER.  相似文献   

9.
On incubation with deoxynucleoside triphosphates and rATP, ether-treated (nucleotide-permeable) cells convert the single-stranded DNA of adsorbed bacteriophage φX174 particles to the double-stranded replicative forms. The main final product is the doubly-closed replicative form, RFI; a minor product is the relaxed form II. Interruptions in the nascent complementary strand of the viral DNA result in pieces corresponding to 5 to 10% of the unit length of the viral DNA. Pieces of similar size were previously seen in studies of the replication synthesis of Escherichia, coli DNA in ether-treated cells. Since the conversion of the single-stranded φX174 DNA to replicative form is known to be mediated entirely by host factors, it is argued that the viral single strands are replicated by macromolecular factors involed in the replication of E. coli DNA and that this is the reason why new φX174 DNA appears in short pieces. Possible consequences of this interpretation for an understanding of duplex replication are discussed. The joining of the short pieces of complementary φX174 DNA is inhibited at low deoxynucleoside triphosphate concentration (1 μM) but not by nicotinamide mononucleotide, which inhibits the NAD-dependent DNA ligase and blocks the conversion of RFII to RFI in ether-treated cells. The results are discussed with respect to previous studies on cell-DNA synthesis (Geider, 1972). It is argued that there are two polynucleotide joining mechanisms, of which only one requires NAD-dependent ligase action.  相似文献   

10.
Linear phiX174 single-stranded DNA can be isolated from phiX phage particles produced under various conditions. About half of the linear strands have a dGMP residue at the 5' end, the remaining have roughly comparable amounts of dCMP, dTMP, and dAMP. The linear strands can be converted to covalently closed circular molecules by polynucleotide ligase, but only after they have been incubated with T4 DNA polymerase and deoxynucleoside triphosphates. Experiments with endonuclease R, the restriction enzyme from Haemophilus influenzae, indicated that the nucleotides incorporated into the DNA during this reaction were found predominantly in a limited region of the genome. The results suggest that the normal intermediate in single-stranded phiX174 DNA synthesis may be a single-stranded linear molecule which is shorter than unit length and is intrinsically capable of circularization.  相似文献   

11.
Deoxyinosine (dI) in DNA can arise from hydrolytic or nitrosative deamination of deoxyadenosine. It is excised in a repair pathway that is initiated by endonuclease V, the nfi gene product, in Escherichia coli. Repair was studied in vitro using M13mp18 derived heteroduplexes containing a site-specific deoxyinosine. Unpaired dI/G mismatch resides within the recognition site for XhoI restriction endonucleases, permitting evaluation of repair occurring on deoxyinosine-containing DNA strand. Our results show that dI lesions were efficiently repaired in nfi+ E. coli extracts but the repair level was much reduced in nfi mutant extracts. We subjected the deoxyinosine-containing heteroduplex to a purified system consisting of soluble endonuclease V fusion protein, DNA polymerase I, and DNA ligase, along with the four deoxynucleoside triphosphates. Interestingly we found these three proteins alone are sufficient to process the dI lesion efficiently. We also found that the 3′-exonuclease activity of DNA polymerase I is sufficient to remove the dI lesion in this minimum reconstituted assay.  相似文献   

12.
Chemical mutagens generally cause nucleotide pool imbalance. We postulated that this effect might enhance the mutagenic effect by reducing the accuracy of DNA-repair synthesis. We used an inducer of DNA repair which causes minor pool modifications, namely UV light, and imbalanced the nucleotide pools by incubating UV-irradiated V79 cells with thymidine or deoxycytidine (10(-5)-10(-2) M) during the early phases of repair. The effects on pool sizes of the incubation with deoxynucleosides were determined by directly measuring the 4 deoxynucleoside triphosphates in cell extracts. The impairment of repair accuracy was evaluated by comparing the frequency of mutations at the HGPRT locus (induction of resistance to 6TG) in irradiated cells incubated with deoxynucleosides or allowed to carry on repair synthesis in nucleoside-free medium. Despite the marked imbalance of pyrimidine nucleotide pools, an increase of mutations was observed only with the highest concentrations of thymidine and deoxycytidine. Such an increase was much lower than that reported in the case of facilitation by excess nucleosides of chemically induced mutagenesis. The results indicate that UV-induced repair is scarcely affected by precursor biases.  相似文献   

13.
Abstract

On UV irradiation of Escherichia coli cells, DNA replication is transiently arrested to allow removal of DNA damage by DNA repair mechanisms. This is followed by a resumption of DNA replication, a major recovery function whose mechanism is poorly understood. During the post-UV irradiation period the SOS stress response is induced, giving rise to a multiplicity of phenomena, including UV mutagenesis. The prevailing model is that UV mutagenesis occurs by the filling in of single-stranded DNA gaps present opposite UV lesions in the irradiated chromosome. These gaps can be formed by the activity of DNA replication or repair on the damaged DNA. The gap filling involves polymerization through UV lesions (also termed bypass synthesis or error-prone repair) by DNA polymerase III. The primary source of mutations is the incorporation of incorrect nucleotides opposite lesions. UV mutagenesis is a genetically regulated process, and it requires the SOS-inducible proteins RecA, UmuD, and UmuC. It may represent a minor repair pathway or a genetic program to accelerate evolution of cells under environmental stress conditions.  相似文献   

14.
Summary UV irradiation of transforming DNA from Haemophilus influenzae, carrying a streptomycin resistance marker (Sr), results in decreased transforming activity. At high DNA concentration the marker survival is lower than it is at low concentration. The transition from high to low survival occurs at concentrations ranging from 2.5×10-3 to 2.5×10-2 g/ml; in this range the probability that transformed cells take up DNA fragments in addition to the marked one increases rapidly. A similar effect of DNA concentration on the percentage of transformants is observed for a mixture of unirradiated and irradiated DNA, where virtually all of the transformants originate from the unirradiated component. This eliminates the possible explanation that the concentration dependence of UV survival of a marker reflects increasing competition for a cellular repair system.It is concluded that the lower marker survival obtained at high DNA concentration involves lethality due to UV lesions present in the additional irradiated DNA taken up by the cell. Thus the steeper marker survival curve is due to the increasing UV dose which the additional DNa necessarily receives when a marker survival curve is being established. Intergration of UV lesions rendering a chromosomal DNA strand inviable is suggested by a slight delay in cell multiplication after uptake of irradiated and — to a lesser extent — unirradiated DNA. Acriflavine at a concentration of 0.5g/ml enhances the effect of DNA concentration on marker survival. Similarly the number of transformants obtained with unirradiated DNA in the presence of acriflavine is more strongly decreased at high than at low DNA concentration. It is suggested that each event of DNA integration involves a small change for lethality, which is enhanced if the DNA carries UV lesions or if acriflavine is present.Dedicated to Professor H. Nachtscheim on the occasion of his 80th birthday.  相似文献   

15.
NAD prevents a DNA repair-type synthesis that is dependent on polymerase I in toluene-treated, X-irradiated Bacillus subtilis. In unirradiated preparations, NAD had little effect on an ATP-dependent, semiconservative synthesis but partially inhibited a repair-type synthesis. In a mutant lacking polymerase I (polA1-), the presence of NAD did not affect dTTP utilization in DNA synthesis. Nicotinamide mononucleotide (NMN) partially reverses the NAD inhibition of repair-type DNA synthesis. NADP and FAD were ineffective as substitutes for NAD. Since NAD is the cofactor for polynucleotide ligase in Bacillus subtilis and NMN is known to discharge AMP from the active AMP ligase complex, it is proposed that activation of DNA ligase reduces dTMP incorporation by reducing sites for, or limiting DNA polymerase I action.  相似文献   

16.
Hydrolytic deamination of cytosine to uracil in DNA is increased in organisms adapted to high temperatures. Hitherto, the uracil base excision repair (BER) pathway has only been described in two archaeons, the crenarchaeon Pyrobaculum aerophilum and the euryarchaeon Archaeoglobus fulgidus, which are hyperthermophiles and use single-nucleotide replacement. In the former the apurinic/apyrimidinic (AP) site intermediate is removed by the sequential action of a 5'-acting AP endonuclease and a 5'-deoxyribose phosphate lyase, whereas in the latter the AP site is primarily removed by a 3'-acting AP lyase, followed by a 3'-phosphodiesterase. We describe here uracil BER by a cell extract of the thermoacidophilic euryarchaeon Thermoplasma acidophilum, which prefers a similar short-patch repair mode as A. fulgidus. Importantly, T. acidophilumcell extract also efficiently executes ATP/ADP-stimulated long-patch BER in the presence of deoxynucleoside triphosphates, with a repair track of ~15 nucleotides. Supplementation of recombinant uracil-DNA glycosylase (rTaUDG; ORF Ta0477) increased the formation of short-patch at the expense of long-patch repair intermediates, and additional supplementation of recombinant DNA ligase (rTalig; Ta1148) greatly enhanced repair product formation. TaUDG seems to recruit AP-incising and -excising functions to prepare for rapid single-nucleotide insertion and ligation, thus excluding slower and energy-costly long-patch BER.  相似文献   

17.
We have investigated the effects of fluctuations in deoxynucleoside triphosphate (dNTP) pool size on DNA repair and, conversely, the effect of DNA repair on dNTP pool size. In confluent normal human skin fibroblasts, dNTP pool size was quantitated by the formation of [3H]TTP from [3H]thymidine; DNA repair was examined by repair replication in cultures irradiated with UV light. As defined by HPLC analysis, the [3H]TTP pool was formed within 30 min of the addition of [3H]thymidine and remained relatively constant for the next 6 h. Addition of 2-10 mM hydroxyurea (HU) caused a gradual 2-4-fold increase in the [3H]TTP pool as HU inhibited DNA synthesis but not TTP production. No difference was seen between the [3H]TTP pool size in cells exposed to 20 J/m2 and unirradiated controls, although DNA-repair synthesis was readily quantitated in the former. This result was observed even though the repair replication protocol caused an 8-10-fold reduction in the size of the [3H]TTP pool relative to the initial studies. In the UV excision-repair studies the presence of hydroxyurea did not alter the specific activity of [3H] thymidine 5'-monophosphate incorporated into parental DNA due to repair replication. These results suggest that fluctuations in the deoxynucleoside triphosphate pools do not limit the extent of excision-repair synthesis in human cells and demonstrate that DNA nucleotide excision-repair synthesis does not significantly diminish the size of the [3H]TTP pool.  相似文献   

18.
1. DNA damage by peplomycin, an antitumor antibiotic, and its repair by cellular enzymes were studied using pUC18 plasmid DNA. The DNA damage and repair were measured by monitoring the conformational changes of pUC18 DNA. 2. Peplomycin-induced DNA damage was enhanced by addition of ferrous ion and inhibited by deferoxamine, a specific iron chelator, suggesting iron-requirement for the DNA damage. 3. DNA damage by peplomycin was inhibited by superoxide dismutase in both native and heat-inactivated forms, possibly due to non-enzymatic interaction. 4. Peplomycin-induced, single-strand breaks in pUC18 DNA was repaired by incubating with a priming factor (an exonuclease purified from mouse ascites sarcoma cells), DNA polymerase beta, four deoxynucleoside triphosphates, T4 DNA ligase and ATP. The average repair patch size was estimated to be approximately four nucleotide length.  相似文献   

19.
Abstract

Pα-methyl deoxynucleoside triphosphates are used as substrates for E. coli DNA polymerase I in template-directed polymerase reactions. It is shown that the modified compounds are incorporated together with the unmodified deoxynucleoside triphosphates into DNA under both nick-translation and Klenow reaction conditions.  相似文献   

20.
The survival of biological activity in irradiated transforming deoxyribonucleic acid (DNA) has been assayed in the wild type and a radiation-sensitive mutant of Micrococcus radiodurans. The frequency of transformation with unirradiated DNA was lower in the mutant to about the same extent as the mutant's increased sensitivity to radiation. However, in both the wild type and the mutant, the irradiated DNA that was incorporated into the bacterial genome was repaired to the same extent as determined by the loss of transforming activity with increasing radiation dose. This applied to DNA irradiated either with ionizing or ultraviolet (UV) radiation. The rate of inactivation of biological activity after UV radiation was the same in any of the DNA preparations tested. For ionizing radiation, the rate of inactivation varied up to 40-fold, depending on the DNA preparation used, but for any one preparation was the same whether assayed in the wild type or the radiation-sensitive mutant. When recipient bacteria were irradiated with ionizing or UV radiation immediately before transformation, the frequency of transformation with unirradiated DNA fell, rapidly and exponentially in the case of the sensitive mutant but in a more complicated fashion in the wild type. The repair of DNA irradiated with ionizing radiation was approximately the same whether assayed in unirradiated or irradiated hosts. Thus, irradiation of the host reduced the integration of DNA but not its repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号