首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 100-kDa heat shock protein, HSP100, was purified from mouse lymphoma cells. Amino acid sequences of three peptide fragments which were obtained from the purified protein by lysylendopeptidase digestion were completely or nearly identical with those of a mouse endoplasmic reticulum protein, ERp99, of a hamster glucose-regulated protein, GRP94, and of a chicken heat shock protein, HSP108, all of which have been known to have strong homology with the 90-kDa heat shock protein, HSP90. HSP100 bound to actin filaments and an apparent Kd for the binding was determined to be 8 x 10(-7) M in 2 mM MgCl2 + 100 mM KCl. Calmodulin inhibited the binding in a Ca2+-dependent manner. Equilibrium gel filtration demonstrated that HSP100 has an ability to bind to calmodulin only in the presence of Ca2+. Moreover, HSP100 competed with HSP90 for binding to actin filaments. These results together with our previous findings that HSP90 and HSP100 have similar physicochemical properties (Koyasu, S., Nishida, E., Kadowaki, T., Matsuzaki, F., Iida, K., Harada, F., Kasuga, M., Sakai, H., and Yahara, I. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 8054-8058) and HSP90 is a calmodulin-regulated actin-binding protein (Nishida, E., Koyasu, S., Sakai, H., and Yahara, I. (1986) J. Biol. Chem. 261, 16033-16036), strongly suggest that HSP100 is structurally and functionally related to HSP90.  相似文献   

2.
The glucocorticoid receptor exists in the cytoplasm of hormone-untreated cells as a complex with the 90-kDa heat shock protein (HSP90). Glucocorticoids induce dissociation of the glucocorticoid binding protein from HSP90 and translocation of the receptor to the nucleus. HSP90 binds to actin filaments, and calmodulin or tropomyosin inhibits the binding. We present here evidence that the HSP90-containing glucocorticoid receptor complexes (8 S receptor) bind to filamentous actin in vitro while the HSP90-free form of the receptor does not. The binding was detectable for both the crude cytosolic fractions and the partially purified 8 S glucocorticoid receptor. Purified HSP90 or tropomyosin completely abolished the binding. Calmodulin also inhibited the binding in a Ca(2+)-dependent manner. From these results, we conclude that the glucocorticoid receptor complex is able to bind actin filaments via the HSP90 moiety. The binding may provide an anchoring mechanism for the glucocorticoid receptor in the cytoplasm.  相似文献   

3.
We have studied the calcium-binding properties of two high affinity calcium-binding proteins from squid optic lobes: one, squid calmodulin (SCaM), similar to bovine brain calmodulin (BCaM), the other, squid calcium-binding protein (SCaBP), distinct (Head, J.F., Spielberg, S., and Kaminer, B. (1983) Biochem J. 209, 797-802). Equilibrium dialysis measurements on the squid proteins (and BCaM) were made at 100 mM KCl in the presence and absence of 3 mM Mg2+, and at 400 mM KCl in the presence of 3 mM Mg2+, which more closely resembles the conditions in the squid. SCaM, SCaBP, and BCaM each bind a maximum of 4 Ca2+ ions/molecule of protein under the ionic conditions tested. SCaBP has a higher affinity than SCaM or BCaM for Ca2+ at 100 mM KCl in the absence of Mg2+. However, in the presence of Mg2+, half-maximal binding to SCaBP occurs at a similar pCa value to that observed with calmodulin. Increasing the KCl concentration reduces the affinity of all three proteins for Ca2+. UV absorption measurements showed that the binding of 4 Ca2+ ions/molecule is necessary to complete spectral changes in SCaBP, compared to two for the calmodulins. While Ca2+ causes perturbations in aromatic chromophores in SCaM and SCaBP, Mg2+ causes a significant perturbation only in SCaBP. These Mg2+-induced changes differ qualitatively from those induced by Ca2+.  相似文献   

4.
Purification and characterization of annexin proteins from bovine lung   总被引:3,自引:0,他引:3  
Calcium-dependent association with a detergent-extracted particulate fraction was used as the first step in the purification of a group of phospholipid binding proteins. Elution of the detergent-insoluble fraction with excess ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) resulted in the release of several soluble proteins, termed calcium-activated proteins or CAPs. In the present paper, we describe the simultaneous purification of these CAPs and characterize their interaction with phospholipid, actin, and calmodulin. Partial sequence analysis has identified the majority of the CAPs as members of the annexin family of calcium and phospholipid binding proteins. Two additional CAPs may be novel proteins, one of which appears to be an annexin protein. All CAPs demonstrated Ca2(+)-dependent binding to phosphatidylserine vesicles but did not bind to phosphatidylcholine vesicles. The majority of CAPs exhibited Ca2(+)-dependent binding to F-actin; however, only CAP-III affected the rate of conversion of G-actin to F-actin. The interaction of CAP-III and lipocortin-85 with F-actin resulted in a Ca2(+)-dependent increase in both light scattering and sedimentation of F-actin under comparatively low centrifugal force. In contrast, only lipocortin-85 caused the formation of F-actin bundles. Although all of the CAPs bound to a calmodulin affinity column in a Ca2(+)-dependent manner, attempts to demonstrate binding of CAPs to native calmodulin were unsuccessful. These studies therefore document the similar behavior of the CAPs toward phospholipid and calmodulin but clearly show that F-actin binding or bundling is not a general property of these proteins. The reported purification procedure should allow further comparative studies of these proteins.  相似文献   

5.
The Ca2(+)-dependent regulation of the erythroid membrane cytoskeleton was investigated. The low-salt extract of erythroid membranes, which is mainly composed of spectrin, protein 4.1, and actin, confers a Ca2+ sensitivity on its interaction with F-actin. This Ca2+ sensitivity is fortified by calmodulin and antagonized by trifluoperazine, a potent calmodulin inhibitor. Additionally, calmodulin is detected in the low-salt extract. These results suggest that calmodulin is the sole Ca2(+)-sensitive factor in the low-salt extract. The main target of calmodulin in the erythroid membrane cytoskeleton was further examined. Under native conditions, calmodulin forms a stable and equivalent complex with protein 4.1 as determined by calmodulin affinity chromatography, cross-linking experiments, and fluorescence binding assays with an apparent Kd of 5.5 x 10(-7) M irrespective of the free Ca2+ concentration. Domain mapping with chymotryptic digestion reveals that the calmodulin-binding site resides within the N-terminal 30-kDa fragment of protein 4.1. In contrast, the interaction of calmodulin with spectrin is unexpectedly weak (Kd = 1.2 x 10(-4) M). Given the content of calmodulin in erythrocytes (2-5 microM), these results imply that the major target for calmodulin in the erythroid membrane cytoskeleton is protein 4.1. Low- and high-shear viscometry and binding assays reveal that an equivalent complex of calmodulin with protein 4.1 regulates the spectrin/actin interaction in a Ca2(+)-dependent manner. At a low Ca2+ concentration, protein 4.1 potentiates the actin cross-linking and the actin binding activities of spectrin. At a high Ca2+ concentration, the protein 4.1-potentiated actin cross-linking activity but not the actin binding activity of spectrin is suppressed by Ca2+/calmodulin. The Ca2(+)-dependent regulation of the spectrin/protein 4.1/calmodulin/actin interaction is discussed.  相似文献   

6.
Mg2+ binds to calmodulin without inducing the changes in secondary structure that are characteristic of Ca2+ binding, or the exposure of hydrophobic surfaces that are involved in typical Ca2+-dependent target interactions. The binding of Mg2+ does, however, produce significant spectroscopic changes in residues located in the Ca2+-binding loops, and the Mg-calmodulin complex is significantly different from apo-calmodulin in loop conformation. Direct measurement of Mg2+ binding constants, and the effects of Mg2+ on Ca2+ binding to calmodulin, are consistent with specific binding of Mg2+, in competition with Ca2+. Mg2+ increases the thermodynamic stability of calmodulin, and we conclude that under resting, nonstimulated conditions, cellular Mg2+ has a direct role in conferring stability on both domains of apo-calmodulin. Apo-calmodulin binds typical target sequences from skeletal muscle myosin light chain kinase and neuromodulin with Kd approximately 70-90 nM (at low ionic strength). These affinities are virtually unchanged by 5 mM Mg2+, in marked contrast to the strong enhancement of peptide affinity induced by Ca2+. Under conditions of stimulation and increased [Ca2+], Mg2+ has a role in directing the mode of initial target binding preferentially to the C-domain of calmodulin, due to the opposite relative affinities for binding of Ca2+ and Mg2+ to the two domains. Mg2+ thus amplifies the intrinsic differences of the domains, in a target specific manner. It also contributes to setting the Ca2+ threshold for enzyme activation and increases the importance of a partially Ca2+-saturated calmodulin-target complex that can act as a regulatory kinetic and equilibrium intermediate in Ca2+-dependent target interactions.  相似文献   

7.
Trans SNARE complex assembly is an essential step in Ca2+-dependent membrane fusion, although the SNARE proteins do not bind Ca2+ ions. Studies to evaluate how the Ca2+sensor protein calmodulin might regulate this process led to the identification of a consensus calmodulin binding motif in the v-SNARE VAMP2. This sequence (residues 77-90) is situated precisely C-terminal to the tetanus toxin (TeNT) and botulinum B toxin cleavage site (76Q-F77) close to the transmembrane anchor. The same domain also binds acidic phospholipids and Ca2+/calmodulin or lipid binding are mutually exclusive. Directed mutagenesis of basic or hydrophobic residues within this motif reduced interactions with both Ca2+/calmodulin and phospholipids to a similar extent. The effects of these mutations on Ca2+-dependent exocytosis was explored using an hGH release assay in permeabilized pheochromocytoma PC12 cells. Treatment of cells with tetanus toxin (TeNT), which cleaves endogenous VAMP, abolished secretion. Secretion could be re-established by transfecting TeNT-resistant VAMP with mutations (Q76V,F77W) in the cleavage site. However rescue of exocytosis was abolished when additional mutations (K83A,K87V or W89A,W90A) were introduced that inhibited calmodulin and phospholipid binding to VAMP. Thus calmodulin and/or phospholipid binding to the membrane proximal region of VAMP is required for Ca2+-dependent exocytosis. We speculate that interactions between cis phospholipids at the vesicle surface and the membrane proximal region of VAMP inhibits SNARE complex assembly. Displacement of these interactions by Ca2+/calmodulin may promote SNARE complex assembly and lead to trans interactions between the membrane proximal region of VAMP and phospholipids in the plasma membrane.  相似文献   

8.
Tetrahymena p85 is localized to the presumptive division plane before the formation of contractile ring microfilaments. p85 binds to calmodulin in a Ca(2+)-dependent manner and both proteins colocalize to the division furrow. Inhibition of the binding of p85 and Ca(2+)/calmodulin prevents both the localization of p85 and calmodulin to the division plane and the formation of the contractile ring, suggesting that the interaction of p85 and Ca(2+)/calmodulin is important in the formation of the contractile ring. We investigated the mechanisms of the formation of contractile ring, and the relationship among p85, CaM, and actin using co-sedimentation assay: p85 binds to G-actin in a Ca(2+)/calmodulin-dependent manner, but does not bind to F-actin. Therefore, we propose that a Ca(2+)/calmodulin signal and its target protein p85 are cooperatively involved in the recruitment of G-actin to the division plane and the formation of the contractile ring.  相似文献   

9.
10.
Ca2+/calmodulin stimulates GTP binding to the ras-related protein ral-A.   总被引:2,自引:0,他引:2  
Ral-A is a Ras-related GTP-binding protein that has been suggested to be the downstream target of Ras proteins and is involved in the tyrosine kinase-mediated, Ras-dependent activation of phospholipase D. We reported recently that Ral-A purified from human erythrocyte membrane binds to calmodulin in a Ca2+-dependent manner at a calmodulin binding domain identified near its C-terminal region (Wang, K. L., Khan, M. T., and Roufogalis, B. D. (1997) J. Biol. Chem. 272, 16002-16009). In this study we show the enhancement of GTP binding to Ral-A by Ca2+/calmodulin. The stimulation up to 3-fold by calmodulin was Ca2+-dependent, with half-maximum activation occurring at 180 nM calmodulin and 80 nM free Ca2+ concentration. The present work supports a regulatory role of Ca2+/calmodulin for the activation of Ral-A and suggests a possible direct link between signal transduction pathways of Ca2+/calmodulin and Ral-A proteins.  相似文献   

11.
The two sulfhydryl groups of chicken gizzard caldesmon were specifically labeled with a photoreactive crosslinker, benzophenone-maleimide, to study its interactions with calmodulin and/or actin. When incubated with F-actin caldesmon crosslinks to a single actin monomer; it can, however, crosslink to up to two calmodulin molecules in the presence, but not in the absence, of Ca2+. Thus caldesmon may have two calmodulin-binding sites, each containing, or being near, one of the two thiol residues. One of these two sites may also be adjacent to the actin-binding site. A calmodulin-binding fragment of caldesmon resulting from cyanogen bromide digestion crosslinks to a single calmodulin molecule, also in a Ca2+-dependent manner. Crosslinking of calmodulin to caldesmon does not prevent the latter from binding F-actin, suggesting that calmodulin and actin do not compete with each other for the same binding site(s) on the caldesmon molecule.  相似文献   

12.
Schroeter M  Chalovich JM 《Biochemistry》2004,43(43):13875-13882
Fesselin is a proline-rich actin-binding protein that was isolated from avian smooth muscle. Fesselin bundles actin and accelerates actin polymerization by facilitating nucleation. We now show that this polymerization of actin can be regulated by Ca(2+)-calmodulin. Fesselin was shown to bind to immobilized calmodulin in the presence of Ca(2+). The fesselin-calmodulin interaction was confirmed by a Ca(2+)-dependent increase in 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid (MIANS) fluorescence upon addition of fesselin to MIANS-labeled wheat germ calmodulin. The affinity was estimated to be approximately 10(9) M(-1). The affinity of Ca(2+)-calmodulin to the fesselin F-actin complex was approximately 10(8) M(-1). Calmodulin binding to fesselin appeared to be functionally significant. In the presence of fesselin and calmodulin, the polymerization of actin was Ca(2+)-dependent. Ca(2+)-free calmodulin either had no effect or enhanced the ability of fesselin to accelerate actin polymerization. Ca(2+)-calmodulin not only reversed the stimulatory effect of fesselin but reduced the rate of polymerization below that observed in the absence of fesselin. While Ca(2+)-calmodulin had a large effect on the interaction of fesselin with G-actin, the effect on F-actin was small. Neither the binding of fesselin to F-actin nor the subsequent bundling of F-actin was greatly affected by Ca(2+)-calmodulin. Fesselin may function as an actin-polymerizing factor that is regulated by Ca(2+) levels.  相似文献   

13.
S100 proteins are EF hand type Ca2+ binding proteins thought to function in stimulus-response coupling by binding to and thereby regulating cellular targets in a Ca2+-dependent manner. To isolate such target(s) of the S100P protein we devised an affinity chromatography approach that selects for S100 protein ligands requiring the biologically active S100 dimer for interaction. Hereby we identify ezrin, a membrane/F-actin cross-linking protein, as a dimer-specific S100P ligand. S100P-ezrin complex formation is Ca2+ dependent and most likely occurs within cells because both proteins colocalize at the plasma membrane after growth factor or Ca2+ ionophore stimulation. The S100P binding site is located in the N-terminal domain of ezrin and is accessible for interaction in dormant ezrin, in which binding sites for F-actin and transmembrane proteins are masked through an association between the N- and C-terminal domains. Interestingly, S100P binding unmasks the F-actin binding site, thereby at least partially activating the ezrin molecule. This identifies S100P as a novel activator of ezrin and indicates that activation of ezrin's cross-linking function can occur directly in response to Ca2+ transients.  相似文献   

14.
Localization of a felodipine (dihydropyridine) binding site on calmodulin   总被引:1,自引:0,他引:1  
The fluorescent dihydropyridine calcium antagonist drug felodipine binds to calmodulin (CaM) in a Ca2+-dependent manner. Its binding can be regulated by the interaction of CaM antagonist drugs through allosteric mechanisms [Mills, J.S., & Johnson, J.D. (1985) Biochemistry 24, 4897]. Here, we have examined the binding of a nonspecific hydrophobic fluorescent probe molecule TNS (toluidinylnaphthalenesulfonate) and of felodipine to CAM and several of its proteolytic fragments. While TNS interacts with sites on both the amino-terminal half of the protein [proteolytic fragment TR1C (1-77)] and carboxy-terminal half [proteolytic fragment TR2C (78-148)], felodipine binding shows more selectivity. It binds in a Ca2+-dependent manner to the proteolytic fragments TM1 (1-106) and TR2E (1-90) but exhibits only weak affinity for TR1C (1-77) and TR2C (78-148). Furthermore, felodipine exhibits selectivity over TNS and trifluoperazine (TFP) in blocking the tryptic cleavage between residues 77 and 78. These studies indicate a selective binding of felodipine to a hydrophobic site existing in residues 1-90 and suggest that productive binding requires amino acids in the region 78-90. Although the felodipine binding site is preserved in fragment 1-106, the allosteric interactions between the prenylamine and the felodipine binding sites that are observed with intact CaM are not observed in this fragment. Rather, prenylamine simply displaces felodipine from its binding site on this fragment. Our results are consistent with calmodulin containing not less than two allosterically related hydrophobic drug binding sites. One of these sites (felodipine) appears to be localized in region 1-90 and the other one in region 78-148.  相似文献   

15.
NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase family protein, is known to bind to C-terminal ends of N-methyl-D-aspartate receptor 2B (NR2B) through its PDZ (PSD-95/Dlg/ZO-1) domains. NE-dlg/SAP102 and NR2B colocalize at synaptic sites in cultured rat hippocampal neurons, and their expressions increase in parallel with the onset of synaptogenesis. We have identified that NE-dlg/SAP102 interacts with calmodulin in a Ca2+-dependent manner. The binding site for calmodulin has been determined to lie at the putative basic alpha-helix region located around the src homology 3 (SH3) domain of NE-dlg/SAP102. Using a surface plasmon resonance measurement system, we detected specific binding of recombinant NE-dlg/SAP102 to the immobilized calmodulin with a Kd value of 44 nM. However, the binding of Ca2+/calmodulin to NE-dlg/SAP102 did not modulate the interaction between PDZ domains of NE-dlg/SAP102 and the C-terminal end of rat NR2B. We have also identified that the region near the calmodulin binding site of NE-dlg/SAP102 interacts with the GUK-like domain of PSD-95/SAP90 by two-hybrid screening. Pull down assay revealed that NE-dlg/SAP102 can interact with PSD-95/SAP90 in the presence of both Ca2+ and calmodulin. These findings suggest that the Ca2+/calmodulin modulates interaction of neuronal membrane-associated guanylate kinase proteins and regulates clustering of neurotransmitter receptors at central synapses.  相似文献   

16.
Regulation of vascular smooth muscle tone by caldesmon.   总被引:14,自引:0,他引:14  
Caldesmon is an actin-binding protein present in smooth muscle cells that also inhibits actin-activated myosin ATPase activity. To assess the possible role of caldesmon in the regulation of smooth contraction, we investigated the effects of synthetic peptides on force directly recorded from single hyperpermeable smooth muscle cells of ferret aorta and portal vein. GS17C, a peptide that contains the residues from Gly651 to Ser667 of the caldesmon sequence plus an added cysteine at the C terminus, binds calmodulin in a Ca(2+)-dependent manner and also binds to F-actin but does not inhibit actomyosin ATPase activity (Zhan, Q., Wong, S.S., and Wang, C.-L.A. (1991) J. Biol. Chem. 266, 21810-21814). In cells in which Ca2+ was clamped at pCa 7.0, GS17C induced a dose-dependent contraction (EC50 = 0.92 microM) in aorta cells, whereas it evoked little or no contraction in portal vein cells. The GS17C-induced contraction in aorta cells was inhibited at higher Ca2+ concentrations (above pCa 6.6) and by pretreatment with calmodulin. Another peptide, C16AA, which contains the residues from Ala594 to Ala609 and does not bind actin or calmodulin, did not induce contraction. Our results strongly suggest that GS17C induces contraction by the displacement of the inhibitory region of endogenous caldesmon and, furthermore, that caldesmon present in these smooth muscle cells regulates contraction by providing a basal resting inhibition of vascular tone.  相似文献   

17.
The calelectrins, a heterogeneous group of three new Ca2+-binding proteins of M 67 000, 35 000 and 32 500, copurify with calmodulin during Ca2+-dependent hydrophobic affinity chromatography (Südhof et al., Biochemistry, in press, 1984). This property is exploited for the rapid purification of all three calelectrins including for the first time the Mr 35 000, from commercially available acetone powders from several bovine tissues (heart, liver, brain, pancreas and testis). The nature of the Ca2+-dependent interaction of the calelectrins with hydrophobic affinity matrices has been investigated. As with calmodulin, the Ca2+-binding sites of all three purified calelectrins can be probed with Tb3+ which binds to them in a stoichiometric, saturable and Ca2+-displaceable manner. However, using several hydrophobic fluorescence probes which bind to the proteins, contrary to calmodulin no Ca2+-dependent exposure of hydrophobic sites could be detected in any of the three purified proteins. Therefore the Ca2+-dependent purification of the calelectrins on hydrophobic affinity columns seems not to involve the surface exposure of hydrophobic sites and the calelectrins have in this respect little similarity to calmodulin.  相似文献   

18.
Cross-linked complex of gizzard myosin light chain kinase (MLCK) and calmodulin (CM) was produced by glutaraldehyde treatment of a mixture of these proteins in a high Ca2+ (0.1 mM) solution. Although the specific activity was reduced, this complex showed MLCK activity in a Ca2+-independent manner, different from the original MLCK whose activity was Ca2+-dependent. Chlorpromazine, one of the CM antagonists, was no longer able to inhibit the MLCK activity of this complex. These observations support the previously proposed hypothesis on the regulatory mechanism of MLCK activity via Ca2+. This complex could be regarded as another kind of Ca2+-independent MLCK different from that obtained by chymotryptic digestion of MLCK (Walsh, M.P., Dabrowska, R., Hinkins, S., & Hartshorne, D.J. (1982) Biochemistry 21, 1919-1925). This complex caused superprecipitation of gizzard actomyosin and enhanced actin-activated ATPase of myosin Ca2+-independently.  相似文献   

19.
We have isolated two Ca2+-binding proteins from squid optic lobes, each of which is also able to bind phenothiazines in a Ca2+-dependent manner. These proteins have each been purified and partly characterized. One of the proteins corresponds to calmodulin, in that it has a similar amino acid content to bovine brain calmodulin, including a single residue of trimethyl-lysine, it co-migrates with bovine calmodulin both on alkaline-urea- and on sodium dodecyl sulphate (SDS)/polyacrylamide-gel electrophoresis, and will activate calmodulin-dependent phosphodiesterase. The second protein has the same subunit molecular weight as calmodulin, as determined by SDS/polyacrylamide-gel electrophoresis, Mr 17 000, but migrates more slowly than this protein on alkaline-urea-gel electrophoresis. It has an amino acid composition distinct from calmodulin, containing no trimethyl-lysine, its CNBr fragments migrate on alkaline gels in a pattern distinct from those of calmodulin and it shows little ability to activate phosphodiesterase. The u.v.-absorption spectra of the proteins indicate the absence of tryptophan and the presence of a high phenylalanine/tyrosine ratio in each. Both proteins also bind 3-4 calcium ions/mol at 0.1 mM-free Ca2+ and each binds chlorpromazine in a Ca2+-dependent manner.  相似文献   

20.
Human erythrocyte membranes reveal different calmodulin-binding proteins determined by a 125I-calmodulin gel overlay procedure. Beside the well-established Ca2+-transport ATPase, other proteins (205, 91, 72 and 42 kDa) bind calmodulin in a Ca2+-dependent manner. Two proteins of the human erythrocyte membrane are able to bind calmodulin only in the absence of Ca2+. One of them (76 kDa) is probably an integral, the other (240 kDa) a peripheral protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号