首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《The Journal of cell biology》1995,129(4):1143-1153
beta 2 integrin (CD11a,b,c/CD18)-mediated cell adhesion is required for many leukocyte functions. Under normal circumstances, the integrins are nonadhesive, and become adhesive for their cell surface ligands, the intercellular adhesion molecules (ICAMs), or soluble ligands such as fibrinogen and iC3b, when leukocytes are activated. Recently, we defined a peptide derived from ICAM-2, which specifically binds to purified CD11a/CD18. Furthermore, this peptide strongly induces T cell aggregation mainly mediated by CD11a/CD18-ICAM-1 interaction, and natural killer cell cytotoxicity. In the present study, we show that the same ICAM-2 peptide also avidly binds to purified CD11b/CD18, but not to CD11c/CD18. This binding can be blocked by the CD11b antibody OKM10. The peptide strongly stimulates CD11b/CD18-ICAM-1-mediated cell aggregations of the monocytic cell lines THP-1 and U937. The aggregations are energy and divalent cation-dependent. The ICAM-2 peptide also induces CD11b/CD18 and CD11c/CD18-mediated binding of THP- 1 cells to fibrinogen and iC3b coated on plastic. These findings indicate that in addition to induction of CD11a/CD18-mediated cell adhesion, the ICAM-2 peptide may also serve as a "trigger" for high avidity ligand binding of other beta 2 integrins.  相似文献   

2.
Role of intercellular adhesion molecule 1 in indomethacin-induced ileitis   总被引:3,自引:0,他引:3  
Adhesion molecules have been implicated in the pathogenesis of inflammatory bowel diseases. We investigated their expression and contribution to leukocyte recruitment in experimental intestinal inflammation. Ileitis was induced in Sprague-Dawley rats by two injections of indomethacin (7.5 mg/kg), given 24 h apart. Endothelial intercellular adhesion molecule-1 (ICAM-1) expression was quantified using the dual radiolabeled monoclonal antibody technique and Mac-1 (CD11b/CD18) expression on leukocytes by flow cytometry. Leukocyte infiltration was monitored by tissue myeloperoxidase (MPO) activity. The first indomethacin injection induced a time- and site-dependent increase of ICAM-1 expression in ileal mucosa and muscularis. The second injection resulted in a reduction of ICAM-1 expression below constitutive levels whereas Mac-1 was upregulated. MPO changes paralleled lesion development over 48 h. ICAM-1 and MPO values were correlated for the first 24 h. Immunoneutralization of either ICAM-1 or Mac-1 attenuated mucosal injury. We conclude that (i) indomethacin-induced ileitis is associated with a temporally disassociated upregulation of ICAM-1 and (ii) despite a reduction in ICAM-1 after 24 h, ICAM-1, in concert with Mac-1, contributes to mucosal injury and leukocyte infiltration elicited by indomethacin.  相似文献   

3.
Upon stimulation with C5a, TNF, or phorbol dibutyrate (PDB), polymorphonuclear leukocytes (PMN) exhibit first an increase then a decrease in adhesion to unstimulated endothelial cells (EC). Essentially all of this adhesion is mediated by the CD18 family of leukocyte integrins on PMN. To determine the individual roles of CD11a/CD18 (LFA-1), CD11b/CD18 (CR3, Mac-1) and CD11c/CD18 (p150,95) in adhesion of PDB-stimulated PMN to unstimulated EC, mAb against the CD11 chains were used. mAb against CD11a or CD11b each blocked adhesion of PMN to EC by approximately 50%, but mAb against CD11c had no effect. Inasmuch as a combination of anti-CD11a and CD11b mAb completely blocked adhesion, it appears that CD11a/CD18 and CD11b/CD18 make approximately equal contributions to binding, and CD11c does not participate. Anti-CD11a or CD11b each blocked adhesion by about 50% throughout the transient time course of PDB-stimulated adhesion, indicating that the capacity of each of these receptors to bind EC is transiently activated by PDB. We next examined the role of ICAM-1 on EC as a ligand for CD18. Two anti-ICAM-1 mAb (LB-2 and 84H10) each inhibited PMN adhesion in a dose-dependent fashion, reaching a maximal inhibition of approximately 50%. Anti-ICAM-1 mAb blocked the CD11a/CD18-dependent portion of adhesion because concomitant use of anti-CD11a and anti-ICAM-1 did not cause additive inhibition. In contrast, anti-CD11b plus anti-ICAM-1 resulted in complete blockade of adhesion. This result suggests that CD11a/CD18 recognizes ICAM-1 on EC, but CD11b/CD18 recognizes a different ligand(s). To determine if CD11b CD18 has the ability to recognize ICAM-1, human macrophages were plated on culture surfaces coated with purified ICAM-1. Interaction of CD11a/CD18 with the surface-bound ICAM-1 resulted in selective down-modulation of CD11a/CD18 from the apical portion of the macrophages. In contrast, ICAM-1-coated surfaces did not down-modulate CD11b/CD18. The data suggest that CD11b/CD18 does not recognize ICAM-1, and that this receptor functions in adhesion of PMN to EC by recognizing novel ligand(s) on EC.  相似文献   

4.
《The Journal of cell biology》1989,109(6):3435-3444
The leukocyte CD11/CD18 adhesion molecules (beta 2 integrins) are a family of three heterodimeric glycoproteins each with a distinct alpha subunit (CD11a, b, or c) and a common beta subunit (CD18). CD11/CD18 mediate crucial leukocyte adhesion functions such as chemotaxis, phagocytosis, adhesion to endothelium, aggregation, and cell-mediated cytotoxicity. The enhanced cell adhesion observed upon activation of leukocytes is associated with increased surface membrane expression of CD11/CD18, as well as a qualitative upregulation of CD11/CD18 functions. To elucidate the nature of the qualitative modifications that occur, we examined the phosphorylation status of these molecules in resting human leukocytes and upon activation with PMA or with the chemotactic peptide F-met-leu-phe (FMLP). In unstimulated cells, all three CD11 subunits were found to be constitutively phosphorylated. In contrast, phosphorylation of the common CD18 subunit was minimal. PMA induced rapid and sustained phosphorylation of CD18 that occurred at high stoichiometry, but had only minimal effects on phosphorylation of the associated CD11 subunits. FMLP also induced rapid phosphorylation of CD18, but the effect was of short duration. FMLP-induced phosphorylation of CD18 was not related to its Ca++-mobilizing effect, as CD18 phosphorylation was not observed upon treatment of leukocytes with the Ca++ ionophore, ionomycin. Phosphoamino acid analysis of CD11/CD18 in PMA- or FMLP-treated monocytes revealed a predominance of phosphoserine residues in all CD11/CD18 subunits. A small component of phosphothreonine was present in CD11c and CD18 and a minor component of phosphotyrosine was also detected in CD18 upon leukocyte activation may regulate the adhesion functions mediated by the CD11/CD18 family of molecules.  相似文献   

5.
Intercellular adhesion molecule-4 (ICAM-4, LW blood group antigen), a member of the immunoglobulin superfamily expressed on red cells, has been reported to bind to CD11a/CD18 and CD11b/CD18 leukocyte integrins. The location of the ICAM-4 binding sites on CD11a/CD18 and CD11b/CD18 are not known. CD11/CD18 integrin I domains have been found to act as major binding sites for physiological ligands and a negatively charged glutamic acid in ICAMs is considered important for binding. ICAM-4 lacks such a residue, which is replaced by an arginine. However, we demonstrate here that ICAM-4 in red cells and transfected fibroblasts interacts specifically with the I domains of CD11a/CD18 and CD11b/CD18 integrins. The binding was inhibited by anti-I domain and anti-ICAM-4 antibodies and it was dependent on divalent cations. Interestingly, ICAM-4 negative red cells were still able to bind to the CD11b/CD18 I domain but the binding of these cells to the CD11a/CD18 I domain was clearly reduced. Using a solid phase assay, we were able to show that isolated I domains directly and specifically bind to purified recombinant ICAM-4 in a cation dependent manner. Competition experiments indicated that the binding sites in ICAM-4 for the CD11a and CD11b I domains are different. However, the ICAM-4 binding region in both I domains seems to overlap with the regions recognized by the ICAM-1 and ICAM-2. Thus we have established that the I domains contain an ICAM-4 binding region in CD11a/CD18 and CD11b/CD18 leukocyte integrins.  相似文献   

6.
Integrin CD11b/CD18 is a key adhesion receptor that mediates leukocyte migration and immune functions. Leukadherin-1 (LA1) is a small molecule agonist that enhances CD11b/CD18-dependent cell adhesion to its ligand ICAM-1. Here, we used single-molecule force spectroscopy to investigate the biophysical mechanism by which LA1-activated CD11b/CD18 mediates leukocyte adhesion. Between the two distinct populations of CD11b/CD18:ICAM-1 complex that participate in cell adhesion, the cytoskeleton(CSK)-anchored elastic elements and the membrane tethers, we found that LA1 enhanced binding of CD11b/CD18 on K562 cells to ICAM-1 via the formation of long membrane tethers, whereas Mn2+ additionally increased ICAM-1 binding via CSK-anchored bonds. LA1 activated wild-type and LFA1−/− neutrophils also showed longer detachment distances and time from ICAM-1-coated atomic force microscopy tips, but significantly lower detachment force, as compared to the Mn2+-activated cells, confirming that LA1 primarily increased membrane-tether bonds to enhance CD11b/CD18:ICAM-1 binding, whereas Mn2+ induced additional CSK-anchored bond formation. The results suggest that the two types of agonists differentially activate integrins and couple them to the cellular machinery, providing what we feel are new insights into signal mechanotransduction by such agents.  相似文献   

7.
Integrin CD11b/CD18 is a key adhesion receptor that mediates leukocyte migration and immune functions. Leukadherin-1 (LA1) is a small molecule agonist that enhances CD11b/CD18-dependent cell adhesion to its ligand ICAM-1. Here, we used single-molecule force spectroscopy to investigate the biophysical mechanism by which LA1-activated CD11b/CD18 mediates leukocyte adhesion. Between the two distinct populations of CD11b/CD18:ICAM-1 complex that participate in cell adhesion, the cytoskeleton(CSK)-anchored elastic elements and the membrane tethers, we found that LA1 enhanced binding of CD11b/CD18 on K562 cells to ICAM-1 via the formation of long membrane tethers, whereas Mn2+ additionally increased ICAM-1 binding via CSK-anchored bonds. LA1 activated wild-type and LFA1−/− neutrophils also showed longer detachment distances and time from ICAM-1-coated atomic force microscopy tips, but significantly lower detachment force, as compared to the Mn2+-activated cells, confirming that LA1 primarily increased membrane-tether bonds to enhance CD11b/CD18:ICAM-1 binding, whereas Mn2+ induced additional CSK-anchored bond formation. The results suggest that the two types of agonists differentially activate integrins and couple them to the cellular machinery, providing what we feel are new insights into signal mechanotransduction by such agents.  相似文献   

8.
Atherogenesis involves the migration of leukocytes into vascular subendothelial space, a process mediated by endothelial and leukocyte cell adhesion molecules. Endothelial molecules are assessed indirectly via serum levels, but leukocyte molecules can be assessed directly. We have therefore hypothesized that leukocyte adhesion molecules are altered to a greater degree in hypercholesterolemia than serum endothelial adhesion molecules. We examined 29 subjects with hypercholesterolemia and 27 controls at baseline and after 12 weeks of atorvastatin treatment (20 mg/day). Expression of leukocyte integrins CD11a, CD11b, CD18, and CD49d and of L-selectin was measured by flow cytometry. Serum ICAM-1, E-selectin and von Willebrand factor were measured by ELISA. Expression of leukocyte adhesion molecules was significantly higher in patients at baseline than in the controls, except for CD11a. Expression significantly decreased after atorvastatin in most adhesion molecules except for CD11b. In contrast, there was no effect of hypercholesterolemia and/or atorvastatin on the serum endothelial molecules. Leukocyte but not endothelial adhesion molecules were influenced by hypercholesterolemia and by lipid lowering treatment. Leukocyte molecules may therefore be a more sensitive marker of atherogenesis than endothelial molecules. Our results support the role of increased leukocyte adhesiveness in atherogenesis.  相似文献   

9.
Activation of T cells often requires both activation signals delivered by ligation of the TCR and those resulting from costimulatory interactions between certain T cell surface accessory molecules and their respective counter-receptors on APC. CD11a/CD18 complex on T cells modulate the activation of T cells by interacting with its counter-receptors intracellular adhesion molecule (ICAM-1) (CD54) and/or ICAM-2 on the surface of APC. The costimulatory ability of ICAM-1 has been demonstrated. Using a soluble ICAM-2 Ig fusion protein (receptor globulin, Rg) we demonstrate the costimulatory effect of ICAM-2 during the activation of CD4+ T cells. When coimmobilized with anti-TCR-1 mAb ICAM-2 Rg induced vigorous proliferative response of CD4+ T cells. This costimulatory effect of ICAM-2 was dependent on its coimmobilization with mAb directed at the CD3/TCR complex but not those directed at CD2 or CD28. Both resting as well as Ag-primed CD4+ T cells responded to the costimulatory effects of ICAM-2. The addition of mAb directed at the CD11a or CD18 molecules almost completely inhibited the responses to ICAM-2 Rg. These results are consistent with the role of CD11a/CD18 complex as a receptor for ICAM-2 mediating its costimulatory effects. Stimulation of T cells with coimmobilized anti-TCR-1 and ICAM-2 resulted in the induction of IL-2R (CD25), and anti-Tac (CD25) mAb inhibited this response suggesting the contribution of endogenously synthesized IL-2 during this stimulation. These results demonstrate that like its homologue ICAM-1, ICAM-2 also exerts a strong costimulatory effect during the TCR-initiated activation of T cells. The costimulatory effects generated by the CD11a/CD18:ICAM-2 interaction may be critical during the initiation of T cell activation by ICAM-1low APC.  相似文献   

10.
The leukocyte cell-adhesion receptors, complexes of the cluster of differentiation antigen 11a with cluster of differentiation antigen 18 (CD11a/CD18), cluster of differentiation antigen 11b with cluster of differentiation antigen 18 (CD11b CD18) and cluster of differentiation antigen 11c with cluster of differentiation antigen 18 (CD11c CD18), are of major importance in several leukocyte functions. Previously a cellular ligand named intercellular-adhesion molecule 1 (ICAM-1) was identified, isolated and extensively characterized. Recently a second similar molecule, intercellular-adhesion molecule 2 (ICAM-2), was found by a functional DNA-cloning method. We have now synthesized the ICAM-2 DNA by the polymerase chain reaction (PCR), sequenced it, and transferred it into mammalian and bacterial expression vectors. A functional leukocyte-binding glycoprotein was obtained by transfection of COS-1 cells. A soluble protein-A - ICAM-2 fusion protein was made in Escherichia coli, purified and used for antiserum production. The antiserum precipitated a cell-surface protein with an apparent molecular mass of 55 kDa from ICAM-2 transfected COS-1 cells, leukocytes and endothelial cells, and inhibited leukocyte binding to transfected COS-1 cells. The bacterial fusion protein, lacking carbohydrate, specifically bound to leukocyte receptors.  相似文献   

11.
BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 mAb. Similarly, freshly isolated epithelial cells from inflamed human intestine bound to CD11b/CD18 in an ICAM-1-independent fashion. CONCLUSIONS: These data indicate that ICAM-1 is strictly polarized in intestinal epithelia and does not represent a counterreceptor for neutrophil CD11b/CD18 during physiologically directed transmigration, but may facilitate apical membrane-PMN interactions after the arrival of PMN in the intestinal lumen.  相似文献   

12.
We have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1) and the complex of leukocyte surface adhesion molecules designated CD11/CD18 to the adhesion of human polymorphonuclear leukocytes (PMN) to cultured human endothelial cells (HEC), activated by rIL-1 beta for 4 or 24 h. Inhibition of PMN attachment to IL-1-activated HEC was measured in a quantitative in vitro monolayer adhesion assay, after treatment with mAb directed to ELAM-1 (mAb H18/17), and to CD11a (mAb L11), CD11b (mAb 44), CD11c (mAb L29), and CD18 (mAb 10F12), alone or in combination. Pretreatment of activated HEC with mAb H18/7 inhibited PMN adhesion by 47 +/- 8% whereas control mAb had no effect. CD11/CD18-directed mAb significantly blocked PMN adhesion to activated HEC (anti-CD11a, 40 +/- 3%; anti-CD11b, 34 +/- 4%; anti-CD18, 78+/- 6% inhibition). The combination of mAb H18/7 and each of the various anti-CD11/CD18 mAb resulted in greater inhibition of PMN adhesion than any Mab alone. After 24 h of rIL-1 beta treatment, when ELAM-1 was markedly decreased but elevated PMN adhesion was still observed, mAb H18/7 had no effect on PMN adhesion. At this time, CD11/CD18-dependent adhesive mechanisms predominated and a CD11c-dependent mechanism became apparent (anti-CD11a, 67 +/- 4% inhibition; anti-CD11b, 45 +/- 9%; anti-CD11c, 26 +/- 6%; anti-CD18, 97 +/- 1%). In summary, PMN adhesion to IL-1-activated HEC involves both CD11/CD18-dependent mechanisms and an ELAM-1-dependent mechanism, and the relative contribution of these varies at different times of IL-1-induced HEC activation. The additive blocking observed at 4 h with mAb H18/7 in combination with CD11/CD18-directed Mab implies that members of the CD11/CD18 complex do not function as an obligate ligand(s) for ELAM-1.  相似文献   

13.
Expression of endothelial and leukocyte cell adhesion molecules is a principal determinant of polymorphonuclear neutrophil (PMN) recruitment during inflammation. It has been demonstrated that pharmacological inhibition of these molecules can attenuate PMN influx and subsequent tissue injury. We determined the temporal expression of alpha-granule membrane protein-40 (P-selectin), endothelial leukocyte adhesion molecule 1 (E-selectin), and intercellular cell adhesion molecule 1 (ICAM-1) after coronary artery occlusion and up to 3 days of reperfusion. The expression of all of these cell adhesion molecules peaked around 24 h of reperfusion. We determined the extent to which these molecules contribute to PMN infiltration by utilizing mice deficient (-/-) in P-selectin, E-selectin, ICAM-1, and CD18. Each group underwent 30 min of in vivo, regional, left anterior descending (LAD) coronary artery ischemia and 24 h of reperfusion. PMN accumulation in the ischemic-reperfused (I/R) zone was assessed using histological techniques. Deficiencies of P-selectin, E-selectin, ICAM-1, or CD18 resulted in significant (P < 0.05) attenuation of PMN infiltration into the I/R myocardium (MI/R). In addition, P-selectin, E-selectin, ICAM-1, and CD18 -/- mice exhibited significantly (P < 0.05) smaller areas of necrosis after MI/R compared with wild-type mice. These data demonstrate that MI/R induces coronary vascular expression of P-selectin, E-selectin, and ICAM-1 in mice. Furthermore, genetic deficiency of P-selectin, E-selectin, ICAM-1, or CD18 attenuates PMN sequestration and myocardial injury after in vivo MI/R. We conclude that P-selectin, E-selectin, ICAM-1, and CD18 are involved in the pathogenesis of MI/R injury in mice.  相似文献   

14.
We investigated the effect of a specific neurokinin-1 receptor (NK1R) antagonist, CP-96,345, on the regulation of the expression of adhesion molecules ICAM-1, VCAM-1, E-selectin, and P-selectin as well as leukocyte recruitment during acute pancreatitis (AP). AP was induced in male Balb/C mice by 10 consecutive hourly intraperitoneal injections of caerulein. In the treatment groups, CP-96,345 was administered at 2.5 mg/kg ip either 30 min before or 1 h after the first caerulein injection. Animals were killed, and the lungs and pancreas were isolated for RNA extraction and RT-PCR or for immunohistochemical staining. mRNA expression of the four adhesion molecules was upregulated in the pancreas during AP. Treatment with CP-96,345 effectively reduced the mRNA expression of P-selectin and E-selectin but not ICAM-1 and VCAM-1. In the lung, ICAM-1, E-selectin, and P-selectin mRNA expression increased during AP. Antagonist treatment suppressed this elevation. Similar expression patterns were seen in the immunohistochemical stainings. Intravital microscopy of the pancreatic microcirculation revealed the effect of CP-96,345 on leukocyte recruitment. The present study provides important information on the relationship between NK1R activation and the regulation of adhesion molecules. Also, this study points to the differential regulation of inflammation in the pancreas and lung with AP.  相似文献   

15.
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder characterized by increased leukocyte recruitment and subsequent tissue damage. An increase in the density of the microvasculature of the colon during IBD has been suggested, leading to the concept that angiogenesis may play a pathological role in IBD. Increased tissue and serum levels of the angiogenic cytokine VEGF-A have been reported in cases of active IBD. In this study, we examined the hypothesis that VEGF-A exerts a proinflammatory effect on colon microvascular endothelium that contributes to colonic inflammation. Leukocyte adhesion to VEGF-A-stimulated colon microvascular endothelial cells was examined using a parallel-plate hydrodynamic flow chamber. ICAM-1 adhesion molecule expression on colonic microvascular endothelium also was determined in response to VEGF-A stimulation, along with characterization of leukocyte adhesion molecule expression. High-dose VEGF-A (50 ng/ml) stimulation increased neutrophil and T cell adhesion to and decreased rolling velocities on activated endothelium, whereas low-dose VEGF-A (10 ng/ml) was without effect. Colonic endothelium constitutively expressed ICAM-1, which was significantly increased by treatment with 50 ng/ml VEGF-A or 10 ng/ml TNF-alpha but not 10 ng/ml VEGF-A. T cells expressed CD18 and CD11a with no expression of CD11b, whereas neutrophils expressed CD18, CD11a, and CD11b. Finally, VEGF-A-dependent leukocyte adhesion was found to occur in a CD18-dependent manner. These results demonstrate that VEGF-A levels found in IBD exert a proinflammatory effect similar to other inflammatory agents and suggest that this cytokine may serve as an intermediary between angiogenic stimulation and cell-mediated immune responses.  相似文献   

16.
Leukocyte recruitment in response to inflammatory signals is in part governed by interactions between endothelial cell receptors belonging to the Ig superfamily and leukocyte integrins. In our previous work, the human Ig superfamily glycoprotein Thy-1 (CD90) was identified as an activation-associated cell adhesion molecule on human dermal microvascular endothelial cells. Furthermore, the interaction of Thy-1 with a corresponding ligand on monocytes and polymorphonuclear cells was shown to be involved in the adhesion of these leukocytes to activated Thy-1-expressing endothelial cells. In this study, we have identified the specific interaction between human Thy-1 and the leukocyte integrin Mac-1 (CD11b/CD18; alphaMbeta2) both in cellular systems and in purified form. Monocytes and polymorphonuclear cells were shown to adhere to transfectants expressing human Thy-1 as well as to primary Thy-1-expressing human dermal microvascular endothelial cells. Furthermore, leukocyte adhesion to activated endothelium as well as the subsequent transendothelial migration was mediated by the interaction between Thy-1 and Mac-1. This additional pathway in leukocyte-endothelium interaction may play an important role in the regulation of leukocyte recruitment to sites of inflammation.  相似文献   

17.
Reactive arthritis can be triggered by inflammatory bowel diseases. We hypothesized that migration of mucosal immune cells from inflamed gut to joints could contribute to the development of reactive arthritis. Here we isolated gut-derived leukocytes from patients with Crohn's disease and ulcerative colitis. Using function-blocking mAbs and in vitro frozen section adhesion assays we studied whether these cells bind to synovial vessels and which molecules mediate the interaction. The results showed that mucosal leukocytes from inflammatory bowel diseased gut bind well to venules in synovial membrane. Small intestinal lymphocytes adhered to synovial vessels using multiple homing receptors and their corresponding endothelial ligands (CD18-ICAM-1, alpha(4)beta(7)/alpha(4)beta(1)-integrin-VCAM-1, L-selectin-peripheral lymph node addressins, and CD44). Of these, only ICAM-1 significantly supported binding of immunoblasts. In contrast, P-selectin glycoprotein ligand-1-P-selectin interaction accounted for practically all synovial adherence of mucosal macrophages. In addition, blocking of vascular adhesion protein-1 significantly inhibited binding of all these leukocyte subsets to joint vessels. We conclude that different leukocyte populations derived from inflamed gut bind avidly to synovial vessels using distinct repertoire of adhesion molecules, suggesting that their recirculation may contribute to the development of reactive arthritis in inflammatory bowel diseases.  相似文献   

18.
rIL-1 beta treatment of cultured human endothelial cells (HEC) promotes polymorphonuclear leukocyte (PMN) adhesion and transmigration. Using in vitro quantitative monolayer adhesion and videomicroscopic transmigration assays, we have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1), intercellular adhesion molecule-1 (ICAM-1), and the leukocyte adhesion complex, CD11/CD18, to these processes. Maximal enhancement of PMN adhesion and transmigration were observed after 4 h of rIL-1 beta treatment, when surface expression of ELAM-1 had peaked and ICAM-1 was modestly increased. Blocking mAb directed to either ELAM-1 or ICAM-1 inhibited greater than 90% of the up-regulated PMN transmigration. Blocking mAb directed to either CD11a/CD18 (LFA-1, a ICAM-1 counter-receptor), CD11b/CD18 (Mo-1), or CD18 (common beta 2-integrin) also blocked greater than 90% of PMN transmigration. At later time points (24 or 48 h), ELAM-1 surface expression was markedly decreased, whereas ICAM-1 expression was increased over the 4-h level; PMN adhesion remained elevated (approximately 50 to 60% of 4 h level), but transmigration returned to levels seen with unactivated HEC. These data indicate that PMN interaction with at least two distinct HEC adhesion molecules is necessary for transendothelial migration and suggests that PMN adhesion and transmigration, although interrelated, are mechanistically distinct processes.  相似文献   

19.
Neutrophils and T cells play an important role in host protection against pulmonary infection caused by Streptococcus pneumoniae. However, the role of the integrins in recruitment of these cells to infected lungs is not well understood. In this study we used the twin approaches of mAb blockade and gene-deficient mice to investigate the relative impact of specific integrins on cellular recruitment and bacterial loads following pneumococcal infection. We find that both Mac-1 (CD11b/CD18) and α(4)β(1) (CD49d/CD29) integrins, but surprisingly not LFA-1 (CD11a/CD18), contribute to two aspects of the response. In terms of recruitment from the circulation into lungs, neutrophils depend on Mac-1 and α(4)β(1), whereas the T cells are entirely dependent on α(4)β(1). Second, immunohistochemistry results indicate that adhesion also plays a role within infected lung tissue itself. There is widespread expression of ICAM-1 within lung tissue. Use of ICAM-1(-/-) mice revealed that neutrophils make use of this Mac-1 ligand, not for lung entry or for migration within lung tissue, but for combating the pneumococcal infection. In contrast to ICAM-1, there is restricted and constitutive expression of the α(4)β(1) ligand, VCAM-1, on the bronchioles, allowing direct access of the leukocytes to the airways via this integrin at an early stage of pneumococcal infection. Therefore, integrins Mac-1 and α(4)β(1) have a pivotal role in prevention of pneumococcal outgrowth during disease both in regulating neutrophil and T cell recruitment into infected lungs and by influencing their behavior within the lung tissue itself.  相似文献   

20.
We investigated whether inhibiting an endothelial adhesion molecule [intracellular adhesion molecule 1 (ICAM-1)] would alter outcome and lung injury in a similar fashion to inhibition of a leukocyte adhesion molecule (integrin CD11b) in a rat model of gram-negative pneumonia. Inhibition of ICAM-1 with monoclonal antibody (MAb) 1A29 (1 mg/kg sc or 0.2 or 2 mg/kg iv, q 12 h x 3) or of CD11b with MAb 1B6 (1 mg/kg sc, q 12 h x 3) were compared against similarly administered placebo proteins in rats challenged with intrabronchial Escherichia coli. After challenge, all animals were treated with antibiotics. ICAM-1 MAb (6 mg/kg, iv, total dose) increased mortality vs. control (P = 0.03). CD11b MAb (3 mg/kg, sc, total dose) did not significantly (P = 0.16) increase mortality rates, but this was not in a range of probability to exclude a harmful effect. All other doses of MAb had no significant effect on survival rates. ICAM-1 and CD11b MAbs had significantly different effects on the time course of lung injury, circulating white cells and lymphocytes, and lung lavage white cells and neutrophils (P = 0.04-0.003). CD11b MAb decreased, whereas ICAM-1 MAb increased these measures compared with control from 6 to 12 h after E. coli. However, from 144 to 168 h after E. coli both MAbs increased these measures compared with control rats but to a greater level with CD11b MAb. Thus both ICAM-1 and CD11b appear to be necessary for survival during E. coli pneumonia. Although these adhesion molecules may participate differently in early lung injury, with CD11b increasing and ICAM-1 decreasing inflammation and injury, both are important for the resolution of later injury. During gram-negative pneumonia the protective roles of ICAM-1 and CD11b may make their therapeutic inhibition difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号