首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endozepines, a family of regulatory peptides related to diazepam-binding inhibitor (DBI), are synthesized and released by astroglial cells. Because rat astrocytes express various subtypes of somatostatin receptors (sst), we have investigated the effect of somatostatin on DBI mRNA level and endozepine secretion in rat astrocytes in secondary culture. Somatostatin reduced in a concentration-dependent manner the level of DBI mRNA in cultured astrocytes. This inhibitory effect was mimicked by the selective sst4 receptor agonist L803-087 but not by the selective sst1, sst2 and sst3 receptor agonists L779-591, L779-976 and L797-778, respectively. Somatostatin was unable to further reduce DBI mRNA level in the presence of the MEK inhibitor U0126. Somatostatin and the sst1, sst2 and sst4 receptor agonists induced a concentration-dependent inhibition of endozepine release. Somatostatin and the sst1, sst2 and sst4 receptor agonists also inhibited cAMP formation dose-dependently. In addition, somatostatin reduced forskolin-induced endozepine release. H89 mimicked the inhibitory effect of somatostatin on endozepine secretion. In contrast the PLC inhibitor U73122, the PKC activator PMA and the PKC inhibitor calphostin C had no effect on somatostatin-induced inhibition of endozepine release. The present data demonstrate that somatostatin reduces DBI mRNA level mainly through activation of sst4 receptors negatively coupled to the MAPK pathway, and inhibits endozepine release through activation of sst1, sst2 and sst4 receptors negatively coupled to the adenylyl cyclase/PKA pathway.  相似文献   

2.
In beta-amyloid (Abeta)-induced neurotoxicity, activation of the NMDA receptor, increased Ca2+ and oxidative stress are intimately associated with neuronal cell death as normally seen in NMDA-induced neurotoxicity. We have recently shown selective sparing of somatostatin (SST)-positive neurons and increased SST expression in NMDA agonist-induced neurotoxicity. Accordingly, the present study was undertaken to determine the effect of Abeta25-35-induced neurotoxicity on the expression of SST in cultured cortical neurons. Cultured cortical cells were exposed to Abeta25-35 and processed to determine the cellular content and release of SST into medium by radioimmunoassay and SST mRNA by RT-PCR. Abeta25-35 induces neuronal cell death in a concentration- and time-dependent fashion, increases SST mRNA synthesis and induces an augmentation in the cellular content of SST. No significant changes were seen on SST release at any concentration of Abeta25-35 after 24 h of treatment. However, Abeta25-35 induces a significant increase of SST release into medium only after 12 h in comparison with other time points. Most significantly, SST-positive neurons are selectively spared in the presence of a lower concentration of Abeta25-35, whereas, in the presence of higher concentrations of Abeta25-35 for extended time periods, SST-positive neurons decrease gradually. Furthermore, Abeta25-35 induces apoptosis at lower concentrations (5 and 10 micromol/L) and necrosis at higher concentrations (20 and 40 micromol/L). Consistent with the increased accumulation of SST, these data suggest that Abeta25-35 impairs cell membrane permeability. Selective sparing of SST-positive neurons at lower concentrations of Abeta25-35 at early time points directly correlates with the pathophysiology of Alzheimer's disease.  相似文献   

3.
Alzheimer's amyloid beta-protein (Abeta) has been reported to potentiate glutamate toxicity in neurons, but very little is known about interaction between Abeta and glutamate in astrocytes. Therefore, in the present study, we investigated the effects of Abeta and glutamate on morphology of astrocytes. Cultured rat cortical astrocytes exhibited polygonal morphology in the absence of stimulation and differentiated into process-bearing stellate cells following exposure to Abeta (20 microM). L-Glutamate (30-1,000 microM) had no effect on astrocyte morphology in the absence of stimulation but strongly suppressed Abeta-induced stellation. The suppressive effect of L-glutamate on Abeta-induced stellation was not mimicked by glutamate receptor agonists and not blocked by glutamate receptor antagonists. In contrast, the suppressive effect of L-glutamate was mimicked by D- and L-aspartate and transportable glutamate uptake inhibitors. These results suggest that Abeta-induced astrocyte stellation is suppressed by a mechanism related to glutamate transporters.  相似文献   

4.
Several reports indicate that lactate can serve as an energy substrate for the brain. The rate of oxidation of this substrate by cultured rat brain astrocytes was 3-fold higher than the rate with glucose, suggesting that lactate can serve as an energy source for these cells. Since transport into the astrocytes may play an important role in regulating nutrient use by individuals types of brain cells, we investigated the uptake ofl-[U-14C]lactate by primary cultures of rat brain astrocytes. Measurement of the net uptake suggested two carrier-mediated mechanisms and an Eadie-Hofstee type plot of the data supported this conclusion revealing 2 Km values of 0.49 and 11.38 mM and Vmax values of 16.55 and 173.84 nmol/min/mg protein, respectively. The rate of uptake was temperature dependent and was 3-fold higher at pH 6.2 than at 7.4, but was 50% less at pH 8.2. Although the lactate uptake carrier systems in astrocytes appeared to be labile when incubated in phosphate buffered saline for 20 minutes, the uptake process exhibited an accelerative exchange mechanism. In addition, lactate uptake was altered by several metabolic inhibitors and effectors. Potassium cyanide and -cyano-4-hydroxycinnamate inhibited lactate uptake, but mersalyl had little or no effect. Phenylpyruvate, -ketoisocaproate, and 3-hydroxybutyrate at 5 and 10 mM greatly attenuated the rate of lactate uptake. These results suggest that the availability of lactate as an energy source is regulated in part by a biphasic transport system in primary astrocytes.This data was presented in part at the meeting of the Federation of American Societies for Experimental Biology in May 1989.  相似文献   

5.
6.
Defensins are cationic peptides with broad-spectrum antimicrobial activity. They are members of a supergene family consisting of alpha and beta subtypes and each subtype is comprised of a number of different isoforms. For example, human alpha-defensin (HAD) has six isoforms, which are expressed by polymorphonuclear leukocytes and Paneth cells. In contrast, human beta-defensin (HBD) has two isoforms that are expressed by epithelial cells of the skin, gut, respiratory and urogenital tracts. Recently, HBD-1 was detected in human brain biopsy tissue. However, little is known about the expression of HBD-1 or HBD-2 in the CNS and whether neural cells can secrete these peptides. For the present study, human astrocyte, microglial, meningeal fibroblast and neuronal cultures were probed for the expression of HBD-1 and HBD-2 mRNA and protein. Each cell type was either maintained in tissue culture medium alone or in medium containing lipopolysaccharide (LPS) at concentrations ranging from 0.1 to 1 microgram/mL, interleukin-1 beta (IL-1beta) at 1-50 ng/mL, or tumor necrosis factor alpha (TNF-alpha) at the same concentrations. The expression of HBD-1 and HBD-2 mRNAs was monitored by RT-PCR. The cDNA products were sequenced to characterize the gene product. HBD-2 protein was detected by immunoblot, immunoprecipitation and immunocytochemistry. Results of these studies showed that HBD-1 mRNA was detected in all cell cultures except in those enriched for neurons. In contrast, HBD-2 mRNA was detected only in astrocyte cultures that were treated with LPS, IL-1beta or TNF-alpha. The detection of the respective proteins correlated positively with the mRNA results. As such, these data represent the first demonstration of HBD-2 expression by astrocytes and suggest that this peptide may play a role in host defense against bacterial CNS pathogenesis.  相似文献   

7.
Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of14CO2 production froml-[U-14C]malate in primary cultures of rat brain astrocytes. The14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased14CO2 production from 0.01 mM and 0.5 mM malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, -ketoglutarate and succinate decreased14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, -cyano-4-hydroxycinnamate and ouabain. Both the biphasic kinetics and the differential action of many of the effectors on the14CO2 production from 0.01 mM and 0.5 mM malate provide evidence for the presence of more than one pool of malate metabolism in cultured rat brain astrocytes.This data was presented in part at the meeting of the Federation of American Societies for Experimental Biology in Las Vegas, Nevada, May 1988.  相似文献   

8.
It is well established that 3-hydroxybutyrate can serve as an energy source for the brain. Since substrate utilization may be regulated in part by transport across the cellular membrane, we investigated the uptake of 3-hydroxybutyrate by primary cultures of rat brain astrocytes. Measurement of the net uptake indicated a saturable system and a Lineweaver-Burke type plot was consistent with a single carrier-mediated mechanism with a Km of 6.03 mM and a Vmax of 32.7 nmol/30 seconds/mg protein. The rate of uptake at pH 6.2 was more than ten times the rate at pH 8.2, with the rate at pH 7.4 being intermediate between these values, suggesting the possibility of cotransport with H+ or exchange with OH (antiport). Mersalyl had only a slight effect on the transport of 3-hydroxybutyrate, suggesting that sulfhydryl groups are not involved in the transport of this monocarboxylic acid. Phenylpyruvate and -ketoisocaproate also attenuated the transport, but lactate had only a marginal effect. These results suggest that the utilization of 3-hydroxybutyrate as an energy source by astrocytes is regulated in part by carrier-mediated transport and that the uptake system is different from the lactate transport system.These data were presented in part at the FASEB Meeting, April, 1990  相似文献   

9.
Neurosteroids may play a major role in the regulation of various neurophysiological and behavioural processes. However, while the biochemical pathways involved in the synthesis of neuroactive steroids in the central nervous system are now elucidated, the mechanisms controlling the activity of neurosteroid-producing cells remain almost completely unknown. In the present study, we have investigated the effect of the octadecaneuropeptide (ODN), an endogenous ligand of benzodiazepine receptors, in the control of steroid biosynthesis in the frog hypothalamus. Glial cells containing ODN-like immunoreactivity were found to send their thick processes in the close vicinity of neurones expressing the steroidogenic enzyme 3 beta-hydroxysteroid dehydrogenase. Exposure of frog hypothalamic explants to graded concentrations of ODN (10(-10)-10(-5) M) produced a dose-dependent increase in the conversion of tritiated pregnenolone into various radioactive steroids, including 17-hydroxypregnenolone, progesterone, 17-hydroxyprogesterone, dehydroepiandrosterone and dihydrotestosterone. The ODN-induced stimulation of neurosteroid biosynthesis was mimicked by the central-type benzodiazepine receptor (CBR) inverse agonists methyl beta-carboline-3-carboxylate (beta-CCM) and methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM). The stimulatory effects of ODN, beta-CCM and DMCM on steroid formation was markedly reduced by the CBR antagonist flumazenil. The ODN-evoked stimulation of neurosteroid production was also significantly attenuated by GABA. Collectively, these data indicate that the endozepine ODN, released by glial cell processes in the vicinity of 3 beta-hydroxysteroid dehydrogenase-containing neurones, stimulates the biosynthesis of neurosteroids through activation of central-type benzodiazepines receptors.  相似文献   

10.
A non-amyloidogenic function of BACE-2 in the secretory pathway   总被引:6,自引:0,他引:6  
beta-Site amyloid precursor protein cleavage enzyme (BACE)-1 and BACE-2 are members of a novel family of membrane-bound aspartyl proteases. While BACE-1 is known to cleave beta-amyloid precursor protein (betaAPP) at the beta-secretase site and to be required for the generation of amyloid beta-peptide (Abeta), the role of its homologue BACE-2 in amyloidogenesis is less clear. We now demonstrate that BACE-1 and BACE-2 have distinct specificities in cleavage of betaAPP in cultured cells. Radiosequencing of the membrane-bound C-terminal cleavage product revealed that BACE-2 cleaves betaAPP in the middle of the Abeta domain between phenylalanines 19 and 20, resulting in increased secretion of APPs-alpha- and p3-like products and reduced production of Abeta species. This cleavage can occur in the Golgi and later secretory compartments. We also demonstrate that BACE-1-mediated cleavage of betaAPP at Asp1 of the Abeta domain can occur as early as in the endoplasmic reticulum, while cleavage at Glu11 occurs in later compartments. These data indicate that the distinct specificities of BACE-1 and BACE-2 in their cleavage of betaAPP differentially affect the generation of Abeta.  相似文献   

11.
Trophic deprivation contributes to astrocyte damage that occurs in acute and chronic neurodegenerative disorders. Unraveling the underlying mechanisms may pave way to novel cytoprotective strategies. Cultured mouse astrocytes responded to trophic deprivation with a large and transient increase in the expression of p21ras, which was secondary to an enhanced formation of reactive oxygen species (ROS) detected by cytofluorimetric analysis after preloading with 2',7'-dichlorofluorescein diacetate. The increase in p21ras levels was largely attenuated by the reducing agent, N -acetylcysteine, which was proven to reduce ROS formation in astrocytes subjected to serum deprivation. We extended the analysis to the Ha-Ras isoform, which has been implicated in mechanisms of cytotoxicity. We found that serum deprivation enhanced the expression and activity of Ha-Ras without changing Ha-Ras mRNA levels. The increase in Ha-Ras levels was sensitive to the protein synthesis inhibitor, cycloheximide, suggesting that serum deprivation increases translation of preformed Ha-Ras mRNA. The late decline in Ha-Ras levels observed after 60 min was prevented by the proteasome inhibitor, MG132, as well as by the selective mitogen-activated protein kinase (MAPK) inhibitor, PD98059. Serum deprivation led to the activation of the MAPK pathway in cultured astrocytes, as shown by an increase in phosphorylated extracellular signal-regulated kinase 1/2 levels after 5 and 30 min. Finally, using the siRNA technology, we found that an acute knock-down of Ha-Ras was protective against astrocyte damage induced by serum deprivation. We conclude that cultured astrocytes respond to trophic deprivation with an increased expression in Ha-Ras, which is limited by the concomitant activation of the MAPK pathway, but is nevertheless involved in the pathophysiology of cell damage.  相似文献   

12.
Astrocyte and glial-neuron interactions have a critical role in brain development, which is partially mediated by glycoproteins, including adhesion molecules and growth factors. Ethanol affects the synthesis, intracellular transport, subcellular distribution and secretion of these glycoproteins, suggesting alterations in glycosylation. We analyzed the effect of long-term exposure to low doses of ethanol (30 mm) on glycosylation process in growing cultured astrocytes in vitro. Cells were incubated for short (5 min) and long (90 min) periods with several radioactively labeled carbohydrate precursors. The uptake, kinetics and metabolism of these precursors, as well as the radioactivity distribution in protein gels were analyzed. The levels of GLUT1 and mannosidase II were also determined. Ethanol increased the uptake of monosaccharides and the protein levels of GLUT1 but decreased those of mannosidase II. It altered the carbohydrate moiety of proteins and increased cell surface glycoproteins containing terminal non-reduced mannose. These results indicate that ethanol impairs glycosylation in rat astrocytes, thus disrupting brain development.  相似文献   

13.
The effects of endothelins (ETs) on the production of stromelysins, a sub-family of matrix metalloproteinases, were examined in cultured astrocytes. The treatment of cultured rat astrocytes with ET-1 increased stromelysin-1 mRNA levels, while stromelysin-2 and -3 mRNAs were not affected. Immunocytochemical observations showed that cultured astrocytes produced stromelysin-1 protein. ET-1 and Ala1,3,11,15-ET-1, an ETB receptor selective agonist, stimulated the release of stromelysin-1 from cultured astrocytes. Accompanying the increase in protein release, the peptidase activity of stromelysin-1 in the medium was also increased by ET-1. The effects of ET-1 on astrocytic stromelysin-1 expression were inhibited by PD98059, staurosporine, and Ca2+ chelation, but not by SB203580 or pyrrolidine dithiocarbamate. These results show that activation of astrocytic ET receptors stimulates the production of stromelysin-1, suggesting a role for ETs in stromelysin production in brain pathologies.  相似文献   

14.
Chronic exposure to manganese (Mn) can cause manganism, a neurodegenerative disorder similar to Parkinson's disease. The toxicity of Mn includes impairment of astrocytic glutamate transporters. 17β-Estradiol (E2) has been shown to be neuroprotective in various neurodegenerative diseases including Parkinson's disease and Alzheimer's disease, and some selective estrogen receptor modulators, including tamoxifen (TX), also possess neuroprotective properties. We have tested our hypothesis that E2 and TX reverse Mn-induced glutamate transporter impairment in astrocytes. The results established that E2 and TX increased glutamate transporter function and reversed Mn-induced glutamate uptake inhibition, primarily via the up-regulation of glutamate/aspartate transporter (GLAST). E2 and TX also increased astrocytic GLAST mRNA levels and attenuated the Mn-induced inhibition of GLAST mRNA expression. In addition, E2 and TX effectively increased the expression of transforming growth factor β1, a potential modulator of the stimulatory effects of E2/TX on glutamate transporter function. This effect was mediated by the activation of MAPK/extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways. These novel findings suggest, for the first time, that E2 and TX enhance astrocytic glutamate transporter expression via increased transforming growth factor β1 expression. Furthermore, the present study is the first to show that both E2 and TX effectively reverse Mn-induced glutamate transport inhibition by restoring its expression and activity, thus offering a potential therapeutic modality in neurodegenerative disorders characterized by altered glutamate homeostasis.  相似文献   

15.
Beta-amyloid peptides (Abeta) are produced by a sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. The lack of Abeta production in beta-APP cleaving enzyme (BACE1)(-/-) mice suggests that BACE1 is the principal beta-secretase in mammalian neurons. Transfection of human APP and BACE1 into neurons derived from wild-type and BACE1(-/-) mice supports cleavage of APP at the canonical beta-secretase site. However, these studies also revealed an alternative BACE1 cleavage site in APP, designated as beta', resulting in Abeta peptides starting at Glu11. The apparent inability of human BACE1 to make this beta'-cleavage in murine APP, and vice versa, led to the hypothesis that this alternative cleavage was species-specific. In contrast, the results from human BACE1 transgenic mice demonstrated that the human BACE1 is able to cleave the endogenous murine APP at the beta'-cleavage site. To address this discrepancy, we designed fluorescent resonance energy transfer peptide substrates containing the beta- and beta'-cleavage sites within human and murine APP to compare: (i) the enzymatic efficiency; (ii) binding kinetics of a BACE1 active site inhibitor LY2039911; and (iii) the pharmacological profiles for human and murine recombinant BACE1. Both BACE1 orthologs were able to cleave APP at the beta- and beta'-sites, although with different efficiencies. Moreover, the inhibitory potency of LY2039911 toward recombinant human and native BACE1 from mouse or guinea pig was indistinguishable. In summary, we have demonstrated, for the first time, that recombinant BACE1 can recognize and cleave APP peptide substrates at the postulated beta'-cleavage site. It does not appear to be a significant species specificity to this cleavage.  相似文献   

16.
beta-Site APP-cleaving enzyme (BACE) initiates the processing of the amyloid precursor protein (APP) leading to the generation of beta-amyloid, the main component of Alzheimer's disease senile plaques. BACE (Asp2, memapsin 2) is a type I transmembrane aspartyl protease and is responsible for the beta-secretase cleavage of APP producing different endoproteolytic fragments referred to as the carboxy-terminal C99, C89 and the soluble ectodomain sAPPbeta. Here we describe two transgenic mouse lines expressing human BACE in the brain. Overexpression of BACE augments the amyloidogenic processing of APP as demonstrated by decreased levels of full-length APP and increased levels of C99 and C89 in vivo. In mice expressing huBACE in addition to human APP wild-type or carrying the Swedish mutation, the induction of APP processing characterized by elevated C99, C89 and sAPPbeta, results in increased brain levels of beta-amyloid peptides Abeta40 and Abeta42 at steady-state.  相似文献   

17.
Ionizing radiations can induce oxidative stress on target tissues, acting mainly through reactive oxygen species (ROS). The aim of this work was to investigate if 17-β-estradiol (βE) was able to prevent hippocampal-related behavioral and biochemical changes induced by neonatal ionizing radiation exposure and to elucidate a potential neuroprotective mechanism. Male Wistar rats were irradiated with 5 Gy of X-rays between 24 and 48 h after birth. A subset of rats was subcutaneously administered with successive injections of βE or 17-α-estradiol (αE), prior and after irradiation. Rats were subjected to different behavioral tasks to evaluate habituation and associative memory as well as anxiety levels. Hippocampal ROS levels and protein kinase C (PKC) activity were also assessed. Results show that although βE was unable to prevent radiation-induced hippocampal PKC activity changes, most behavioral abnormalities were reversed. Moreover, hippocampal ROS levels in βE-treated irradiated rats approached control values. In addition, αE administered to irradiated animals was effective in preventing radiation-induced alterations. In conclusion, βE was able to counteract behavioral and biochemical changes induced in irradiated animals, probably acting through an antioxidant mechanism.  相似文献   

18.
19.
How senile plaques and neurofibrillary tangles are linked represents a major gap in our understanding of the pathophysiology of Alzheimer's disease (AD). We have previously shown that the addition of fibrillar beta-amyloid (Abeta) to mature hippocampal neurons results in progressive neuritic degeneration accompanied by the enhanced phosphorylation of adult tau isoforms. In the present study, we sought to obtain more direct evidence of the signal transduction pathway(s) activated by fibrillar Abeta leading to tau phosphorylation and the generation of dystrophic neurites. Our results indicated that fibrillar Abeta induced the progressive and sustained activation of the mitogen-activated protein kinase (MAPK) in mature hippocampal neurons. On the other hand, the specific inhibition of the MAPK signal transduction pathway by means of PD98059, a MAPK kinase (MEK) specific inhibitor, prevented the phosphorylation of tau (at Ser199/Ser202) induced by fibrillar Abeta. In addition, the inhibition of MAPK activation partially prevented neurite degeneration. Taken collectively, our results suggest that the sustained activation of the MAPK signal transduction pathway induced by fibrillar Abeta may lead to the abnormal phosphorylation of tau and the neuritic degeneration observed in AD.  相似文献   

20.
Androgens modulate beta-amyloid levels in male rat brain   总被引:1,自引:0,他引:1  
As a normal consequence of aging, men experience a significant decline in androgen levels. Although the neural consequences of age-related androgen depletion remain unclear, recent evidence suggests a link between low androgen levels and the development of Alzheimer's disease (AD). Here, we test the hypothesis that androgens act as endogenous modulators of beta-amyloid protein (Abeta) levels. To investigate this possibility, brain and plasma levels of Abeta were measured in male rats with varying hormonal conditions. Depletion of endogenous sex steroid hormones via gonadectomy (GDX) resulted in increased brain levels of Abeta in comparison to gonadally intact male rats. This GDX-induced increase in Abeta levels was reversed by DHT supplementation, demonstrating a functional role for androgens in modulating brain levels of Abeta. These findings suggest that age-related androgen depletion may result in accumulation of Abeta in the male brain and thereby act as a risk factor for the development of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号