首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The production of pectinase, the major virulence determinant of soft-rot Erwinia species, is controlled by many regulatory factors. We focused on the major regulatory proteins, KdgR, CRP, Pir, and PecS, characterized mainly in E. chrysanthemi, and tested for their presence and function in the control of pectate lyase (Pel) and polygalacturonase (Peh) production in E. carotovora subsp. carotovora. Homologues of kdgR and crp but not of pir and pecS were detected by Southern blot analyses in E. carotovora subsp. carotovora. In fact, KdgR and CRP homologues of E. carotovora subsp. carotovora had high amino acid identities to those of E. chrysanthemi, including a complete match of the hypothetical helix-turn-helix DNA-binding motif. However, in Western blot analyses using anti-Pir (E. chrysanthemi) antibodies, a cross-reacting protein was present in both Erwinia species, although Pel production in E. carotovora subsp. carotovora was not further stimulated by adding plant extract into the medium containing PGA (polygalacturonic acid) in which hyperinduction by Pir has been reported in E. chrysanthemi EC16. When plasmids that contained each of these regulatory genes from E. chrysanthemi were introduced into E. carotovora subsp. carotovora, Pel production was controlled as predicted from their roles in E. chrysanthemi, except for PecS. PecS exerted a positive control in E. carotovora subsp. carotovora, in contrast to a negative control in E. chrysanthemi. DNA-binding assays demonstrated that KdgR, CRP, Pir, and PecS of E. chrysanthemi and KdgR and CRP homologues of E. carotovora subsp. carotovora could bind to the promoter regions of pel-1, pel-3, and peh of E. carotovora subsp. carotovora. Taken together, KdgR and CRP homologues of E. carotovora subsp. carotovora may regulate Pel and Peh production as in E. chrysanthemi. However, the presence of Pir and PecS homologues in E. carotovora subsp. carotovora was not identified in this study, though these proteins of E. chrysanthemi were functional on the promoter regions of the pectinase genes of E. carotovora subsp. carotovora.  相似文献   

2.
3.
4.
5.
6.
7.
Human alpha-1,3-fucosyltansferase (FucT) encoded by the FUT6 gene was displayed at the cell surface of yeast cells engineered using the yeast cell wall protein Pir1 or Pir2, and the FucT activity was detected at the surface of cells producing the Pir1-HA-FUT6 or Pir2-FLAG-FUT6 fusion proteins. To obtain higher activity, we engineered the host yeast cells in which endogenous PIR genes of the PIR1-4 gene family were disrupted. Among the disruptants, the pir1Delta pir2Delta pir3Delta strain with the PIR1-HA-FUT6 fusion gene showed the highest FucT activity, which was about three-fold higher than that of the wild-type strain. Furthermore, the co-expression of both the Pir1-HA-FUT6 and the Pir2-FLAG-FUT6 fusions showed an approximately 1.5-fold higher activity than that in the cell wall displaying Pir1-HA-FUT6 alone. The present method was thus effective for producing yeast cells that can easily synthesize various oligosaccharides, such as Le(x) and sLe(x), using Pir-glycosyltransferase fusions in combination with the deletion of endogenous PIR genes.  相似文献   

8.
9.
We examined the localization of the Pir protein family (Pir1 to Pir4), which is covalently linked to the cell wall in an unknown manner. In contrast to the other Pir proteins, a fusion of Pir1p and monomeric red fluorescent protein distributed in clusters in pir1Delta cells throughout the period of cultivation, indicating that Pir1p is localized in bud scars. Further microscopic analysis revealed that Pir1p is expressed inside the chitin rings of the bud scars. Stepwise deletion of the eight units of the repetitive sequence of Pir1p revealed that one unit is enough for the protein to bind bud scars and that the extent of binding of Pir1p to the cell wall depends on the number of these repetitive units. The localization of a chimeric Pir1p in which the repetitive sequence of Pir1p was replaced with that of Pir4p revealed the functional role of the different protein regions, specifically, that the repetitive sequence is required for binding to the cell wall and that the C-terminal sequence is needed for recruitment to bud scars. This is the first report that bud scars contain proteins like Pir1p as internal components.  相似文献   

10.
11.
Proteins with internal repeats (Pir) belong to a minor group of covalently linked yeast cell wall proteins. They are not essential for viability but important for cell wall strength, reduced permeability against plant antifungal enzymes and maintenance of osmotic stability. Here we show the importance of Pir proteins of Saccharomyces cerevisiae for growth at low pH and in presence of various inhibitors. Cell wall analysis of Deltapir1,2,3,4 deletion strain revealed slightly increased chitin content and changes in relative proportion of alkali-soluble and insoluble glucan and chitin fractions. Activation of the cell wall integrity pathway was indicated by increased levels of double phosphorylated Mpk1p/Slt2p in the pir deletants.  相似文献   

12.
Colonization of plant tissue by the phytopathogen Erwinia chrysanthemi EC16 is aided by the activities of the pectate lyase isozymes (PLs), which depolymerize the polygalacturonic acid component (PGA) of plant cell walls. The bacterium secretes four pectate lyases (PLa, PLb, PLc, and PLe), two of which, PLc and PLe, have been shown to fold into a similar domain motif, the beta-helix. To understand the rationale behind the evolution and retention of these isoforms, the susceptibilities of pectate lyases B, C, and E to chemical and thermal denaturation and the resulting enzymatic inactivation were examined. With guanidine hydrochloride used as a denaturant, all three pectate lyases denatured with transition midpoint guanidine hydrochloride concentrations (Cm) of 1.3, 1.1, and 1.8 M for PLb, PLc, and PLe, respectively. Lyase activity decreased in direct response to loss of secondary structure in all enzymes. Pectate lyases B and C demonstrated increased enzymatic activity at temperatures above 30 degrees C, with maximal activity observed at 40 degrees C for PLb and 35 degrees C for PLc. Transition midpoints (Tm) as measured by circular dichroism were at 46.9 degrees C for PLb and 44.3 degrees C for PLc, indicating detectable conformational changes accompanying thermal inactivation. Decreased enzymatic activity of PLe was observed at all temperatures above 30 degrees C, and the enzyme was found to possess a Tm at 38.9 degrees C. The data demonstrate structural differences among these enzymes that may be the basis for different enzymatic efficiencies under the potential array of environmental conditions experienced by the bacterium. These differences, in turn, may play a part in the retention of these isozymes as virulence factors, allowing the successful colonization of susceptible plant hosts.  相似文献   

13.
The four pectate lyases (EC 4.2.2.2) secreted by Erwinia chrysanthemi EC16 have been individually produced as recombinant enzymes in Escherichia coli. Oligogalacturonates formed from polygalacturonic acid during reactions catalyzed by each enzyme have been determined by high-performance liquid chromatography analysis. PLa catalyzes the formation of a series of oligomers ranging from dimer to dodecamer through a random endolytic depolarization mechanism. PLb and PLc are trimer- and tetramer-generating enzymes with an identical combination of endolytic and exolytic mechanisms. PLe catalyzes a nonrandom endolytic depolymerization with the formation of dimer as the predominant product. The pectate lyases secreted by E. chrysanthemi EC16 represent a battery of enzymes with three distinct approaches to the depolymerization of plant cell walls.  相似文献   

14.
15.
A pectate lyase gene (pelY) from Yersinia pseudotuberculosis was cloned in Escherichia coli DH-5 alpha. The gene was expressed in either orientation in pUC plasmids, indicating that the insert DNA carried a Y. pseudotuberculosis promoter which functioned in E. coli. However, when cloned in the orientation which placed the coding region downstream of the vector lac promoter, expression of pelY was nine times higher than it was in the opposite orientation and the growth of E. coli cells was inhibited. Nucleotide sequence analysis of the pelY gene disclosed an open reading frame of 1,623 base pairs (PLY). The peptide sequence at the amino-terminal end of the protein contains a typical signal peptide sequence, consistent with the observation that the mature PLY protein accumulated largely in the periplasmic space of E. coli. The pI of PLY produced in E. coli cells was 4.5, and its activity was inhibited 90% or more by EDTA. The enzyme macerated cucumber tissue about 1,000 times less efficiently than did PLe from Erwinia chrysanthemi EC16. The pelY gene has no sequence similarity to the pel genes thus far sequenced from Erwinia spp.  相似文献   

16.
17.
The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Delta mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Delta mutants displayed a striking (approximately 3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Delta and apn1 Delta mutants. pir1 Delta and apn1 Delta mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA.  相似文献   

18.
19.
Pectate lyase is a saccharide-binding enzyme that lyitically depolymerizes polypectate in higher plant cell walls, thus causing soft-rot diseases in food crops. A pectate lyase from Erwinia chrysanthemi, EC16 (PLe), crystallizes in the orthorhombic space group P2(1)2(1)2(1) with unit cell dimension of a = 39.0 A, b = 91.0 A and c = 103.4 A. The asymmetric unit consists of one molecule with a molecular mass of 38,118 daltons and the X-ray diffraction extends to a resolution of 1.8 A. The crystals reproducibly grow to large dimensions and are suitable for a high-resolution X-ray diffraction analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号