首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
Genetic variation within and between species can be shaped by population-level processes and mutation; however, the relative impact of "survival of the fittest" and "arrival of the fittest" on phenotypic evolution remains unclear. Assessing the influence of mutation on evolution requires understanding the relative rates of different types of mutations and their genetic properties, yet little is known about the functional consequences of new mutations. Here, we examine the spectrum of mutations affecting a focal gene in Saccharomyces cerevisiae by characterizing 231 novel haploid genotypes with altered activity of a fluorescent reporter gene. 7% of these genotypes had a nonsynonymous mutation in the coding sequence for the fluorescent protein and were classified as "coding" mutants; 2% had a change in the S. cerevisiae TDH3 promoter sequence controlling expression of the fluorescent protein and were classified as "cis-regulatory" mutants; 10% contained two copies of the reporter gene and were classified as "copy number" mutants; and the remaining 81% showed altered fluorescence without a change in the reporter gene itself and were classified as "trans-acting" mutants. As a group, coding mutants had the strongest effect on reporter gene activity and always decreased it. By contrast, 50%-95% of the mutants in each of the other three classes increased gene activity, with mutants affecting copy number and cis-regulatory sequences having larger median effects on gene activity than trans-acting mutants. When made heterozygous in diploid cells, coding, cis-regulatory, and copy number mutant genotypes all had significant effects on gene activity, whereas 88% of the trans-acting mutants appeared to be recessive. These differences in the frequency, effects, and dominance among functional classes of mutations might help explain why some types of mutations are found to be segregating within or fixed between species more often than others.  相似文献   

2.
The genomics of gene expression   总被引:10,自引:0,他引:10  
  相似文献   

3.
4.
5.
Abundant raw material for cis-regulatory evolution in humans   总被引:16,自引:0,他引:16  
  相似文献   

6.
7.
8.
9.
10.
11.
BACKGROUND: Changes in developmental gene expression are central to phenotypic evolution, but the genetic mechanisms underlying these changes are not well understood. Interspecific differences in gene expression can arise from evolutionary changes in cis-regulatory DNA and/or in the expression of trans-acting regulatory proteins, but few case studies have distinguished between these mechanisms. Here, we compare the regulation of the yellow gene, which is required for melanization, among distantly related Drosophila species with different pigment patterns and determine the phenotypic effects of divergent Yellow expression. RESULTS: Yellow expression has diverged among D. melanogaster, D. subobscura, and D. virilis and, in all cases, correlates with the distribution of black melanin. Species-specific Yellow expression patterns were retained in D. melanogaster transformants carrying the D. subobscura and D. virilis yellow genes, indicating that sequence evolution within the yellow gene underlies the divergence of Yellow expression. Evolutionary changes in the activity of orthologous cis-regulatory elements are responsible for differences in abdominal Yellow expression; however, cis-regulatory element evolution is not the sole cause of divergent Yellow expression patterns. Transformation of the D. melanogaster yellow gene into D. virilis altered its expression pattern, indicating that trans-acting factors that regulate the D. melanogaster yellow gene have also diverged between these two species. Finally, we found that the phenotypic effects of evolutionary changes in Yellow expression depend on epistatic interactions with other genes. CONCLUSIONS: Evolutionary changes in Yellow expression correlate with divergent melanin patterns and are a result of evolution in both cis- and trans-regulation. These changes were likely necessary for the divergence of pigmentation, but evolutionary changes in other genes were also required.  相似文献   

12.
13.
Landry CR  Wittkopp PJ  Taubes CH  Ranz JM  Clark AG  Hartl DL 《Genetics》2005,171(4):1813-1822
Hybrids between species are often characterized by novel gene-expression patterns. A recent study on allele-specific gene expression in hybrids between species of Drosophila revealed cases in which cis- and trans-regulatory elements within species had coevolved in such a way that changes in cis-regulatory elements are compensated by changes in trans-regulatory elements. We hypothesized that such coevolution should often lead to gene misexpression in the hybrid. To test this hypothesis, we estimated allele-specific expression and overall expression levels for 31 genes in D. melanogaster, D. simulans, and their F1 hybrid. We found that 13 genes with cis-trans compensatory evolution are in fact misexpressed in the hybrid. These represent candidate genes whose dysregulation might be the consequence of coevolution of cis- and trans-regulatory elements within species. Using a mathematical model for the regulation of gene expression, we explored the conditions under which cis-trans compensatory evolution can lead to misexpression in interspecific hybrids.  相似文献   

14.
In the studies reported here, we have examined the properties of the Mcp element from the Drosophila melanogaster bithorax complex (BX-C). We have found that sequences from the Mcp region of BX-C have properties characteristic of Polycomb response elements (PREs), and that they silence adjacent reporters by a mechanism that requires trans-interactions between two copies of the transgene. However, Mcp trans-regulatory interactions have several novel features. In contrast to classical transvection, homolog pairing does not seem to be required. Thus, trans-regulatory interactions can be observed not only between Mcp transgenes inserted at the same site, but also between Mcp transgenes inserted at distant sites on the same chromosomal arm, or even on different arms. Trans-regulation can even be observed between transgenes inserted on different chromosomes. A small 800-bp Mcp sequence is sufficient to mediate these long-distance trans-regulatory interactions. This small fragment has little silencing activity on its own and must be combined with other Polycomb-Group-responsive elements to function as a "pairing-sensitive" silencer. Finally, this pairing element can also mediate long-distance interactions between enhancers and promoters, activating mini-white expression.  相似文献   

15.
16.
17.
18.
19.
Expression variation is widespread between species. The ability to distinguish regulatory change driven by natural selection from the consequences of neutral drift remains a major challenge in comparative genomics. In this work, we used observations of mRNA expression and promoter sequence to analyze signatures of selection on groups of functionally related genes in Saccharomycete yeasts. In a survey of gene regulons with expression divergence between Saccharomyces cerevisiae and S. paradoxus, we found that most were subject to variation in trans-regulatory factors that provided no evidence against a neutral model. However, we identified one regulon of membrane protein genes controlled by unlinked cis- and trans-acting determinants with coherent effects on gene expression, consistent with a history of directional, nonneutral evolution. For this membrane protein group, S. paradoxus alleles at regulatory loci were associated with elevated expression and altered stress responsiveness relative to other yeasts. In a phylogenetic comparison of promoter sequences of the membrane protein genes between species, the S. paradoxus lineage was distinguished by a short branch length, indicative of strong selective constraint. Likewise, sequence variants within the S. paradoxus population, but not across strains of other yeasts, were skewed toward low frequencies in promoters of genes in the membrane protein regulon, again reflecting strong purifying selection. Our results support a model in which a distinct expression program for the membrane protein genes in S. paradoxus has been preferentially maintained by negative selection as the result of an increased importance to organismal fitness. These findings illustrate the power of integrating expression- and sequence-based tests of natural selection in the study of evolutionary forces that underlie regulatory change.  相似文献   

20.
Activities of 28 enzymes from central carbon metabolism were measured in pericarp tissue of ripe tomato fruits from field trials with an introgression line (IL) population generated by introgressing segments of the genome of the wild relative Solanum pennellii (LA0716) into the modern tomato cultivar Solanum lycopersicum M82. Enzyme activities were determined using a robotized platform in optimized conditions, where the activities largely reflect the level of the corresponding proteins. Two experiments were analyzed from years with markedly different climate conditions. A total of 27 quantitative trait loci were shared in both experiments. Most resulted in increased enzyme activity when a portion of the S. lycopersicum genome was substituted with the corresponding portion of the genome of S. pennellii. This reflects the change in activity between the two parental genotypes. The mode of inheritance was studied in a heterozygote IL population. A similar proportion of quantitative trait loci (approximately 30%) showed additive, recessive, and dominant modes of inheritance, with only 5% showing overdominance. Comparison with the location of putative genes for the corresponding proteins indicates a large role of trans-regulatory mechanisms. These results point to the genetic control of individual enzyme activities being under the control of a complex program that is dominated by a network of trans-acting genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号