首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We studied the effect of systemic hypoxia on the bronchial vascular pressure-flow relationship in anesthetized ventilated sheep. The bronchial artery, a branch of the bronchoesophageal artery, was cannulated and perfused with a pump with blood from a femoral artery. Bronchial blood flow was set so bronchial arterial pressure approximated systemic arterial pressure. For the group of 25 sheep, control bronchial blood flow was 22 ml/min or 0.7 ml.min-1.kg-1. During the hypoxic exposure, animals were ventilated with a mixture of N2 and air to achieve an arterial PO2 (PaO2) of 30 or 45 Torr. For the more severe hypoxic challenge, bronchial vascular resistance (BVR), as determined by the slope of the linearized pressure-flow curve, decreased acutely from 3.8 +/- 0.4 mmHg.ml-1.min to 2.9 +/- 0.3 mmHg.ml-1.min after 5 min of hypoxia. However, this vasodilation was not sustained, and BVR measured at 30 min of hypoxia was 4.2 +/- 0.8 mmHg.ml-1.min. The zero flow intercept, an index of downstream pressure, remained unaltered during the hypoxic exposure. Under conditions of moderate hypoxia (PaO2 = 45 Torr), BVR decreased from 4.6 +/- 0.3 to 3.8 +/- 0.4 mmHg.ml-1.min at 5 min and remained dilated at 30 min (3.6 +/- 0.5 mmHg.ml-1.min). To determine whether dilator prostaglandins were responsible for the initial bronchial vascular dilation under conditions of severe hypoxia (PaO2 approximately equal to 30 Torr), we studied an additional group of animals with pretreatment with the cyclooxygenase inhibitors indomethacin (2 mg/kg) and ibuprofen (12.5 mg/kg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
With an isolated perfused canine lung, the compliance of pulmonary circulation was measured and partitioned into components corresponding to alveolar and extra-alveolar compartments. When the lungs were in zone 3, changes in outflow pressure (delta Po) affected all portions of the vasculature causing a change in lung blood volume (delta V). Thus the ratio delta V/delta Po in zone 3 represented the compliance of the entire pulmonary circulation (Cp) plus that of the left atrium (Cla). When the lungs were in zone 2, changes in Po affected only the extra-alveolar vessels that were downstream from the site of critical closure in the alveolar vessels. Thus the ratio delta V/delta Po with forward flow in zone 2 represented the compliance of the venous extra-alveolar vessels (Cv) plus Cla. With reverse flow in zone 2, delta V/delta Po represented the compliance of the arterial extra-alveolar vessels (Ca). The compliance of the alveolar compartment (Calv) was calculated from the difference between Cp and the sum of Ca + Cv. When Po was 6-11 mmHg, Cp was 0.393 +/- 0.0380 (SE) ml X mmHg-1 X kg-1 with forward perfusion and 0.263 +/- 0.0206 (SE) ml X mmHg-1 X kg-1 with reverse perfusion. Calv was 79 and 68% of Cp with forward and reverse perfusion, respectively. When Po was raised to 16-21 mmHg, Cp decreased to 0.225 +/- 0.0235 (SE) ml X mmHg-1 X kg-1 and 0.183 +/- 0.0133 (SE) ml X mmHg-1 X kg-1 with forward and reverse perfusion, respectively. Calv also decreased but remained the largest contributor to Cp. We conclude that the major site of pulmonary vascular compliance in the canine lung is the alveolar compartment, with minor contributions from the arterial and venous extra-alveolar segments.  相似文献   

3.
The major purpose of this study was to determine whether the longitudinal distribution of pulmonary vascular pressures changes with postnatal age in rabbits. Using the direct micropuncture technique, we measured pressures in 20- to 80-microns-diam arterioles and venules in isolated lungs of rabbits of different postnatal ages. To determine the contribution of vasomotor tone, we added the vasodilator papaverine to the perfusate of some lungs of each age group. We compared vascular pressures measured at blood flow rates chosen to approximate in vivo cardiac outputs. In untreated lungs, the resistance across 20- to 80-microns-diam microvessels decreased from 12- to 72-h-old (0.022 +/- 0.009 cmH2O.min.kg.ml-1) to 5- to 15-day-old rabbits (0.008 +/- 0.007 cmH2O.min.kg.ml-1) and remained at this lower level in adults (0.013 +/- 0.008 cmH2O.min.kg.ml-1). In contrast, in papaverine-treated lungs, the resistance across 20- to 80-microns-diam microvessels did not change between 12- to 72-h-old (0.007 +/- 0.005 cmH2O.min.kg.ml-1) and 5- to 15-day-old rabbits (0.005 +/- 0.002 cmH2O.min.kg.ml-1) but increased between 5- to 15-day-old and adult rabbits (0.014 +/- 0.007 cmH2O.min.kg.ml-1). Thus vasomotor tone contributed to the postnatal change in the distribution of vascular pressures across lungs of rabbits.  相似文献   

4.
Chronic hypoxia increases pulmonary arterial pressure (PAP) as a result of vasoconstriction, polycythemia, and vascular remodeling with medial thickening. To determine whether preventing the polycythemia with repeated bleeding would diminish the pulmonary hypertension and remodeling, we compared hemodynamic and histological profiles in hypoxic bled (HB, n = 6) and hypoxic polycythemic guinea pigs (H, n = 6). After 10 days in hypoxia (10% O2), PAP was increased from 10 +/- 1 (SE) mmHg in room air controls (RA, n = 5) to 20 +/- 1 mmHg in H (P less than 0.05) but was lower in HB (15 +/- 1 mmHg, P less than 0.05 vs. H). Cardiac output and pulmonary artery vasoreactivity did not differ among groups. Total pulmonary vascular resistance increased from 0.072 +/- 0.011 mmHg.ml-1.min in RA to 0.131 mmHg.ml-1.min in H but was significantly lower in HB (0.109 +/- 0.006 mmHg.ml-1.min). Hematocrit increased with hypoxia (57 +/- 3% in H vs. 42 +/- 1% in RA, P less than 0.05), and bleeding prevented the increase (46 +/- 4% in HB, P less than 0.05 vs. H only). The proportion of thick-walled peripheral pulmonary vessels (53.2 +/- 2.9% in HB and 50.6 +/- 4.8% in H vs. 31.6 +/- 2.6% in RA, P less than 0.05) and the percent medial thickness of pulmonary arteries adjacent to alveolar ducts (7.2 +/- 0.6% in HB and 7.0 +/- 0.4% in H vs. 5.2 +/- 0.4% in RA, P less than 0.05) increased to a similar degree in both hypoxic groups. A similar tendency was present in larger bronchiolar vessels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Six near-term ewes were instrumented to measure regional blood flows in the maternal and fetal subthoracic structures and allowed to recover for 5 days. Control blood flows were measured and 10(-3) molar forskolin was infused in the fetal hindlimb vein at 1 ml/min. After 10 min of infusion, maternal and fetal regional blood flows were measured. The fetal blood pressure was 44 +/- 3 mmHg in the control state and 40 +/- 4 mmHg after forskolin, P less than 0.056. The fetal renal vascular resistance changed from 24.4 +/- 2.4 to 17.5 +/- 1.7 mmHg.ml-1.min.g, P less than 0.005. The placenta had a control resistance of 27.7 +/- 5.0 and 25.6 +/- 5.1 mmHg.ml-1.min.g after forskolin, P less than 0.05. The placental membranes showed vasodilation: control resistance was 261 +/- 49 and 168 +/- 39 mmHg.ml-1.min.g after forskolin, P less than 0.02. The generalized vasodilation of the fetal circulation was paralleled in the maternal circulation. Forskolin, a lipid soluble diterpene, apparently had a placental clearance close to the theoretical maximum. Vasodilation was seen in the maternal renal, placental and uterine vasculatures. Maternal blood pressure was unchanged. Maternal placental vascular resistance was 47.4 +/- 3.0 mmHg.ml-1.min.g in the control state and 40.6 +/- 3.3 mmHg.ml-1.min.g after forskolin, P less than 0.02. Forskolin is a vasodilator in both the fetal and maternal circulations. The maintenance of a relatively normal blood pressure in the face of regional vasodilation shows that forskolin may have a positive inotropic effect on the fetal heart. These results indicate that neither the fetal nor the maternal ovine placental vasculature is maximally dilated in the control state.  相似文献   

6.
We studied the bronchial vascular response to downstream pressure elevation by increasing left atrial pressure (Pla) and mean airway pressure (Paw) with positive end-expiratory pressure (PEEP). In seven pentobarbital-anesthetized ventilated sheep, we cannulated and perfused the bronchial branch of the bronchoesophageal artery. Steady-state bronchial artery pressure- (Pba) flow (Qba) relationships were obtained as Pla was increased by inflating a balloon catheter in the left atrium. Bronchial vascular resistance (BVR), determined by the inverse slope of the Pba-Qba relationship, increased significantly from 3.2 +/- 0.3 (SE) mmHg.ml-1.min-1 at a Pla of 2.9 +/- 0.7 mmHg to 5.1 +/- 0.5 mmHg.ml-1.min-1 at a Pla of 20.1 +/- 2.0 mmHg (P = 0.0007). Under control Qba (23.3 +/- 1.2 ml/min), these changes in BVR represent a 3.6 +/- 0.7-mmHg increase in Pba per mmHg increase in Pla. The zero-flow pressure increased 1.3 +/- 0.2 mmHg/mmHg increase in Pla. After infusion of papaverine, a smooth muscle paralytic agent, directly into the bronchial artery, BVR decreased significantly to 1.3 +/- 0.7 mmHg.ml-1.min-1 (P = 0.0004). Under these dilated conditions, BVR was unaltered by increases in Pla. After papaverine administration, Pba increased 0.9 +/- 0.1 and 1.2 +/- 0.1 mmHg/mmHg increase in Pla during control and zero-flow conditions, respectively. Thus the effect of Pla elevation on BVR appears to be dependent on active smooth muscle responses. Paw elevation had similar effects on Pba. Under control Qba, Pba increased 2.2 +/- 0.4 mmHg/mmHg increase in Paw.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We previously found that increased intravascular pressure decreased ischemic lung injury by a nitric oxide (NO)-dependent mechanism (Becker PM, Buchanan W, and Sylvester JT. J Appl Physiol 84: 803-808, 1998). To determine the role of cyclic nucleotides in this response, we measured the reflection coefficient for albumin (sigma(alb)), fluid flux (), cGMP, and cAMP in ferret lungs subjected to either 45 min ("short"; n = 7) or 180 min ("long") of ventilated ischemia. Long ischemic lungs had "low" (1-2 mmHg, n = 8) or "high" (7-8 mmHg, n = 6) vascular pressure. Other long low lungs were treated with the NO donor (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium -1, 2-diolate (PAPA-NONOate; 5 x 10(-4) M, n = 6) or 8-bromo-cGMP (5 x 10(-4) M, n = 6). Compared with short ischemia, long low ischemia decreased sigma(alb) (0.23 +/- 0.04 vs. 0.73 +/- 0.08; P < 0.05) and increased (1.93 +/- 0.26 vs. 0.58 +/- 0.22 ml. min(-1). 100 g(-1); P < 0.05). High pressure prevented these changes. Lung cGMP decreased by 66% in long compared with short ischemia. Lung cAMP did not change. PAPA-NONOate and 8-bromo-cGMP increased lung cGMP, but only 8-bromo-cGMP decreased permeability. These results suggest that ischemic vascular injury was, in part, mediated by a decrease in cGMP. Increased vascular pressure prevented injury by a cGMP-independent mechanism that could not be mimicked by administration of exogenous NO.  相似文献   

8.
Inhibition of voltage-gated, L-type Ca(2+) (Ca(L)) channels by clinical calcium channel blockers provides symptomatic improvement to some pediatric patients with pulmonary arterial hypertension (PAH). The present study investigated whether abnormalities of vascular Ca(L) channels contribute to the pathogenesis of neonatal PAH using a newborn piglet model of hypoxia-induced PAH. Neonatal piglets exposed to chronic hypoxia (CH) developed PAH by 21 days, which was evident as a 2.1-fold increase in pulmonary vascular resistance in vivo compared with piglets raised in normoxia (N). Transpulmonary pressures (DeltaPtp) in the corresponding isolated perfused lungs were 20.5 +/- 2.1 mmHg (CH) and 11.6 +/- 0.8 mmHg (N). Nifedipine reduced the elevated DeltaPtp in isolated lungs of CH piglets by 6.4 +/- 1.3 mmHg but only reduced DeltaPtp in lungs of N piglets by 1.9 +/- 0.2 mmHg. Small pulmonary arteries from CH piglets also demonstrated accentuated Ca(2+)-dependent contraction, and Ca(2+) channel current was 3.94-fold higher in the resident vascular muscle cells. Finally, although the level of mRNA encoding the pore-forming alpha(1C)-subunit of the Ca(L) channel was similar between small pulmonary arteries from N and CH piglets, a profound and persistent upregulation of the vascular alpha(1C) protein was detected by 10 days in CH piglets at a time when pulmonary vascular resistance was only mildly elevated. Thus chronic hypoxia in the neonate is associated with the anomalous upregulation of Ca(L) channels in small pulmonary arteries in vivo and the resulting abnormal Ca(2+)-dependent resistance may contribute to the pathogenesis of PAH.  相似文献   

9.
This study was designed to test the hypothesis that the pulsatility index (PI) of the umbilical artery flow velocity waveform varies as a function of placental vascular resistance. Placental vascular resistance was raised by a one-minute occlusion of the maternal inferior vena cava. Occlusion of the maternal inferior vena cava resulted in a decrease in fetal heart rate from 183 +/- 7.8 beats/min to 142 +/- 8.6 beats/min at the end of occlusion (P less than 0.05). Placental vascular resistance increased from 0.113 +/- 0.021 mmHg.ml-1.min during control to 0.151 +/- 0.033 mmHg.ml-1.min (P less than 0.05) during occlusion. The pulsatility index increased from 1.05 +/- 0.05 to 1.85 +/- 0.4 (P less than 0.05) during occlusion. After parasympathetic blockade with atropine fetal heart rate did not change during occlusion. Placental vascular resistance increased from 0.091 +/- 0.014 before to 0.121 +/- 0.021 mmHg.ml-1.min during occlusion (P less than 0.05). The pulsatility index increased from 0.98 +/- 0.1 before to 1.12 +/- 0.12 during occlusion (P less than 0.05). These results support the hypothesis that, in the fetal sheep, placental vascular resistance is one of the determinants of the pulsatility index of the umbilical artery.  相似文献   

10.
We have determined the sites of hypoxic vasoconstriction in ferret lungs. Lungs of five 3- to 5-wk-old and five adult ferrets were isolated and perfused with blood. Blood flow was adjusted initially to keep pulmonary arterial pressure at 20 cmH2O and left atrial and airway pressures at 6 and 8 cmH2O, respectively (zone 3). Once adjusted, flow was kept constant throughout the experiment. In each lung, pressures were measured in subpleural 20- to 50-microns-diam arterioles and venules with the micropipette servo-nulling method during normoxia (PO2 approximately 100 Torr) and hypoxia (PO2 less than 50 Torr). In normoxic adult ferret lungs, approximately 40% of total vascular resistance was in arteries, approximately 40% was in microvessels, and approximately 20% was in veins. With hypoxia, the total arteriovenous pressure drop increased by 68%. Arterial and venous pressure drops increased by 92 and 132%, respectively, with no change in microvascular pressure drop. In 3- to 5-wk-old ferret lungs, the vascular pressure profile during normoxia and the response to hypoxia were similar to those in adult lungs. We conclude that, in ferret lungs, arterial and venous resistances increase equally during hypoxia, resulting in increased microvascular pressures for fluid filtration.  相似文献   

11.
Pentoxifylline (Pent) is a xanthine known to improve erythrocyte deformability and thought to have little effect on smooth muscle tone. In this study I examined the direct effects of Pent on the pulmonary vasculature of isolated lungs and compared them with the effects of aminophylline. The object was to study whether Pent can reverse the hypoxic pressor response (HPR) by its hemorheological property. Changes in pulmonary arterial pressure (Pa) of isolated lungs (pigs and rats) perfused at constant flow rate were monitored to reflect changes in vascular resistance. During normoxia, injection of Pent (5 mg/kg animal weight) in pig lungs depressed the Pa from 12.8 +/- 1.8 to 8.1 +/- 0.8 mmHg (1 mmHg = 133.3 Pa); whereas during hypoxia, Pa was depressed from 34.0 +/- 2.3 to 12.3 +/- 1.4 mmHg. To identify the mechanism of this vasodepressor effect (being either vasodilation or improved erythrocyte deformability), I tested the effect of Pent in lungs perfused with cell-free perfusate. In these plasma-perfused lungs, the vasodepressor effects of Pent were similar to those observed during blood perfusion (slight depression in Pa during normoxia, but large during hypoxia). Similar experiments in blood and plasma perfused pig lungs revealed that aminophylline (5 mg/kg) also produced similar vasodepressor responses. The effects of Pent in rat lungs were comparable; no effect during normoxia, but a depressor effect during hypoxia. Vasoconstriction in pig lungs induced by angiotensin infusion was also abolished by Pent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
To assess the degree of circulatory fullness and to evaluate the influence of peripheral and cardiac factors in the regulation of cardiac output during pregnancy, the following studies were conducted using pentobarbital-anesthetized, open-chest nonpregnant and late term pregnant guinea pigs. Mean circulatory filling pressure was taken as the equilibrium pressure when the pulmonary artery was constricted. Total vascular compliance was assessed by +/- 5-mL changes in blood volume performed while this constriction was maintained. A separate group of guinea pigs was prepared with a pulmonary artery electromagnetic flow probe and right atrial catheter. Rapid infusion of saline was used to increase right atrial pressure while the cardiac output was determined. Pregnancy was characterized by the following changes relative to nonpregnant controls: 51Cr-labelled RBC blood volume increased from 55 +/- 3 to 67 +/- 3 mL/kg; mean circulatory filling pressure increased from 7.1 +/- 0.2 to 8.0 +/- 0.5 mmHg (1 mmHg = 133.322 Pa); right atrial pressure decreased from 3.4 +/- 0.2 to 2.1 +/- 0.3 mmHg; and cardiac output increased from 71.8 +/- 3.9 to 96.8 +/- 3.3 mL.min-1.kg-1. Total vascular compliance was not changed (2.1 +/- 0.1 mL.kg-1.mmHg-1) and most of the expanded blood volume was accommodated as unstressed volume. The cardiac function curve was shifted upwards in pregnant animals. The resistance to venous return, as determined from the slope of the venous return curves, was not changed. These data suggest that the circulation of the pregnant guinea pig is slightly overfilled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In this study, we present a new approach for using the pressure vs. time data obtained after various vascular occlusion maneuvers in pump-perfused lungs to gain insight into the longitudinal distribution of vascular resistance with respect to vascular compliance. Occlusion data were obtained from isolated dog lung lobes under normal control conditions, during hypoxia, and during histamine or serotonin infusion. The data used in the analysis include the slope of the arterial pressure curve and the zero time intercept of the extrapolated venous pressure curve after venous occlusion, the equilibrium pressure after simultaneous occlusion of both the arterial inflow and venous outflow, and the area bounded by equilibrium pressure and the arterial pressure curve after arterial occlusion. We analyzed these data by use of a compartmental model in which the vascular bed is represented by three parallel compliances separated by two series resistances, and each of the three compliances and the two resistances can be identified. To interpret the model parameters, we view the large arteries and veins as mainly compliance vessels and the small arteries and veins as mainly resistance vessels. The capillary bed is viewed as having a high compliance, and any capillary resistance is included in the two series resistances. With this view in mind, the results are consistent with the major response to serotonin infusion being constriction of large and small arteries (a decrease in arterial compliance and an increase in arterial resistance), the major response to histamine infusion being constriction of small and large veins (an increase in venous resistance and a decrease in venous compliance), and the major response to hypoxia being constriction of the small arteries (an increase in arterial resistance). The results suggest that this approach may have utility for evaluation of the sites of action of pulmonary vasomotor stimuli.  相似文献   

14.
The site of change in pulmonary vascular resistance (PVR) after surfactant displacement with the detergent diocytl sodium sulfosuccinate (OT) was studied in the isolated canine left lower lobe preparation. Changes in PVR were assessed using the arterial and venous occlusion technique and the vascular pressure-flow relationship. Changes in alveolar surface tension were confirmed from measurements of pulmonary compliance as well as from measurements of surface tension of extracts from lung homogenates. After surfactant depletion (the perfusion rate constant) the total pressure gradient (delta PT) across the lobe increased from 13.4 +/- 1 to 17.1 +/- 0.8 mmHg. This increase in delta PT was associated with a significant increase in the arterial and venous gradients (3.7 +/- 0.3 to 4.9 +/- 0.4 and 5.7 +/- 0.5 to 9.4 +/- 0.6 mmHg, respectively) and a decrease in middle pressure gradient (4.1 +/- 0.8 to 2.9 +/- 0.6 mmHg). The vascular pressure-flow relationship supported these findings and showed that the mean slope increased by 52% (P less than 0.05), whereas the pressure intercept decreased slightly but not significantly (3.7 +/- 0.7 to 3.2 +/- 0.8 mmHg). These results suggest that the resistance of arteries and veins increases, whereas the resistance of the middle segment decreases after surfactant depletion. These effects were apparently due to surface tension that acts directly on the capillary wall. Direct visualization of subpleural capillaries supported the notion that capillaries become distended and recruited as alveolar surface tension increases. In the normal lung (perfused at constant-flow rate) changes in alveolar pressure (Palv) were transmitted fully to the capillaries as suggested by equal changes in pulmonary arterial pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Recurrent and intermittent nocturnal hypoxia is characteristic of several diseases including chronic obstructive pulmonary disease, congestive heart failure, obesity-hypoventilation syndrome, and obstructive sleep apnea. The contribution of hypoxia to cardiovascular morbidity and mortality in these disease states is unclear, however. To investigate the impact of recurrent nocturnal hypoxia on hemodynamics, sympathetic activity, and vascular tone we evaluated 10 normal volunteers before and after 14 nights of nocturnal sustained hypoxia (mean oxygen saturation 84.2%, 9 h/night). Over the exposure, subjects exhibited ventilatory acclimatization to hypoxia as evidenced by an increase in resting ventilation (arterial Pco(2) 41.8 +/- 1.5 vs. 37.5 +/- 1.3 mmHg, mean +/- SD; P < 0.05) and in the isocapnic hypoxic ventilatory response (slope 0.49 +/- 0.1 vs. 1.32 +/- 0.2 l/min per 1% fall in saturation; P < 0.05). Subjects exhibited a significant increase in mean arterial pressure (86.7 +/- 6.1 vs. 90.5 +/- 7.6 mmHg; P < 0.001), muscle sympathetic nerve activity (20.8 +/- 2.8 vs. 28.2 +/- 3.3 bursts/min; P < 0.01), and forearm vascular resistance (39.6 +/- 3.5 vs. 47.5 +/- 4.8 mmHg.ml(-1).100 g tissue.min; P < 0.05). Forearm blood flow during acute isocapnic hypoxia was increased after exposure but during selective brachial intra-arterial vascular infusion of the alpha-blocker phentolamine it was unchanged after exposure. Finally, there was a decrease in reactive hyperemia to 15 min of forearm ischemia after the hypoxic exposure. Recurrent nocturnal hypoxia thus increases sympathetic activity and alters peripheral vascular tone. These changes may contribute to the increased cardiovascular and cerebrovascular risk associated with clinical diseases that are associated with chronic recurrent hypoxia.  相似文献   

16.
Systemic hemodynamics, including forearm blood flow and ventilatory parameters, were evaluated in 21 subjects before and after exposure to 8 h of poikilocapnic hypoxia. To evaluate the role of sympathetic nervous system activation in the changes, in 10 of these subjects, we measured muscle sympathetic nerve activity (MSNA) before and after exposure, and the remaining 11 subjects received intra-arterial phentolamine infusion in the brachial artery to define vascular tone in the absence of sympathetically mediated vasoconstriction. Short-term ventilatory acclimatization occurred as evidenced by a decrease in resting Pco(2) (from 42 +/- 1.4 to 37 +/- 0.96 mmHg) and by an increase in the slope of the ventilatory response to acute hypoxia [from 0.7 +/- 0.1 to 1.2 +/- 0.2 l.min(-1).%Sp(O(2)) (blood O(2) saturation from pulse oximetry)] after exposure. Subjects demonstrated a significant increase in resting heart rate (from 61 +/- 2 to 65 +/- 2 beats/min) and diastolic blood pressure (from 64.8 +/- 2.7 to 70.4 +/- 2.0 mmHg). MSNA did not change significantly after exposure, although there was a trend toward a decrease in burst frequency (from 19.8 +/- 4.1 to 14.3 +/- 1.2 bursts/min). Forearm vascular resistance showed a significant decrease after termination of exposure (from 37.7 +/- 3.6 to 27.6 +/- 2.7 mmHg.ml(-1).min.100 g tissue, P < 0.05). Initially, progressive isocapnic hypoxia elicited significant vasodilation, but after 8 h of poikilocapnic hypoxic exposure, the acute challenge failed to change forearm vascular resistance. Local alpha-blockade with phentolamine restored the vasodilatory response to acute hypoxia in the postexposure setting.  相似文献   

17.
18.
The current study was done to test the hypothesis that protein kinase C (PKC) inhibitors prevent the increase in pulmonary vascular resistance and compliance that occurs in isolated, blood-perfused dog lungs during hypoxia. Pulmonary vascular resistances and compliances were measured with vascular occlusion techniques. Hypoxia significantly increased pulmonary arterial resistance, pulmonary venous resistance, and pulmonary capillary pressure and decreased total vascular compliance by decreasing both microvascular and large-vessel compliances. The nonspecific PKC inhibitor staurosporine (10(-7) M), the specific PKC blocker calphostin C (10(-7) M), and the specific PKC isozyme blocker G?-6976 (10(-7) M) inhibited the effect of hypoxia on pulmonary vascular resistance and compliance. In addition, the PKC activator thymeleatoxin (THX; 10(-7) M) increased pulmonary vascular resistance and compliance in a manner similar to that in hypoxia, and the L-type voltage-dependent Ca(2+) channel blocker nifedipine (10(-6) M) inhibited the response to both THX and hypoxia. These results suggest that PKC inhibition blocks the hypoxic pressor response and that the pharmacological activation of PKC by THX mimics the hypoxic pulmonary vasoconstrictor response. In addition, L-type voltage-dependent Ca(2+) channel blockade may prevent the onset of the hypoxia- and PKC-induced vasoconstrictor response in the canine pulmonary vasculature.  相似文献   

19.
The role of thermoregulatory background in the baroreceptor reflex control of the tail circulation was investigated 1) in anesthetized rats with a constant flow technique and 2) in conscious rats by measuring tail blood flow (venous occlusion plethysmography). In series I, during normothermia, systemic intravenous phenylephrine infusion increased mean arterial pressure (MAP) by 61.0 +/- 3.6 mmHg and induced a reflex decrease in tail perfusion pressure (TPP) from 105.0 +/- 6.3 to 84.2 +/- 4.4 mmHg (P less than 0.005). Hyperthermia decreased TPP to 66.5 +/- 5.1 mmHg (P less than 0.001) and abolished the TPP response to increased MAP (P greater than 0.05). Increases in MAP via systemic infusion of whole blood caused reductions in TPP during normothermia but failed to reduce TPP further during hyperthermia. Graded decreases in MAP during both normothermia and hyperthermia caused tail vasoconstriction. The increase in TPP was greater (P less than 0.025) during hyperthermia. In series II, conscious animals showed similar responses to hemorrhage. Graded decreases in MAP produced graded decreases in tail vascular conductance (TVC, ml.100 ml-1.min-1.100 mmHg-1). The slope of the TVC-MAP relationship averaged 0.011 +/- 0.003 TVC U/mmHg during normothermia and was markedly steeper (P less than 0.01) during hyperthermia (1.99 +/- 0.39 TVC U/mmHg). Thus the participation of the cutaneous vasculature of the rat in baroreceptor reflexes depends on thermal status, probably through the level of background sympathetic vasoconstrictor nerve activity.  相似文献   

20.
We examined the effects of hypoxia and pulsatile flow on the pressure-flow relationships in the isolated perfused lungs of Fitch ferrets. When perfused by autologous blood from a pump providing a steady flow of 60 ml/min, the mean pulmonary arterial pressure rose from 14.6 to 31.3 Torr when alveolar PO2 was reduced from 122 to 46 Torr. This hypoxic pressor response was characterized by a 10.1-Torr increase in the pressure-axis intercept of the extrapolated pressure-flow curves and an increase in the slope of these curves from 130 to 240 Torr X l-1 X min. With pulsatile perfusion from a piston-type pump, mean pulmonary arterial pressure increased from 17.5 to 36.3 Torr at the same mean flow. This hypoxic pressor response was also characterized by increases in the intercept pressure and slope of the pressure-flow curves. When airway pressure was raised during hypoxia, the intercept pressure increased further to 25 +/- 1 Torr with a further increase in vascular resistance to 360 Torr X l-1 X min. Thus, in contrast to the dog lung, in the ferret lung pulsatile perfusion does not result in lower perfusion pressures during hypoxia when compared with similar mean levels of steady flow. Since the effects of high airway pressure and hypoxia are additive, they appear to act at or near the same site in elevating perfusion pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号