首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quenching of tryptophan fluorescence of maize and wheat NADP-malic enzyme by KI and acrylamide was studied after denaturating proteins with guanidine hydrochloride, and subjecting them to different pH values or temperatures. Protein unfolding by guanidine hydrochloride resulted in a red shift of the fluorescence spectrum, providing further support for the motion that several of the tryptophan residues evolved from an apolar to a polar environment. Protein denaturation was accompanied by an increase in the effective dynamic quenching constant values and by loss of the enzyme's activities. Thermal denaturation gave results consistent with the ones observed for chemical denaturation suggesting that a putative intermediate is involved in the denaturation process. Finally, exposure of both enzymes at various pH values allowed us to infer the number of accessible tryptophan residues in the different oligomeric conformations. The results suggest that the aggregation process seems to be different for each enzyme. Thus, as the maize enzyme associated from monomer to tetramer, one tryptophan residue would change from a polar to an apolar environment, while the association of the wheat enzyme would cause that two tryptophan residues to be excluded from quenching. Hitherto, quenching of the tryptophan fluorescence provides a good tool for studying conformational changes of proteins. The future availability of the crystal structures of plant NADP-malic enzymes will offer a good validation point for our model and the technology used.  相似文献   

2.
Denaturation of fructose-1,6-bisphosphatase (Fru-P2-ase, EC 3.1.3.11) by urea and renaturation of denatured enzyme has been investigated. Denaturation lowers the specific activity of the enzyme but even at 8 M urea concentration in the presence of sucrose the activity of the enzyme is detectable. Centrifugation of the enzyme in a sucrose density gradient at 4 M urea reveals one peak of protein corresponding to a dimer. Denaturation increases intensity of intrinsic fluorescence of Fru-P2-ase and causes a red shift of fluorescence peak of the thioisoindole derivative of the enzyme. Renaturation of the denatured enzyme followed as the reappearance of enzymatic activity in the presence and absence of bovine serum albumin (BSA) is characterised by first order kinetics, k = 1.78 X 10(-3) s-1. The presence of BSA does not affect the rate of renaturation but perceptibly increases the recovery of enzymatic activity. A 100% recovery of Fru-P2-ase activity is observed at 0.5 micrograms/mL concentration of the enzyme and 2 mg/mL of BSA.  相似文献   

3.
W. Schnedl 《Chromosoma》1971,35(2):111-116
A denaturating and renaturating technique, applied to mouse chromosomes, makes visible characteristic banding patterns by which all elements of the karyotype can be individually distinguished. The Y chromosome as a whole appears darkly stained. The X chromosome comprises 6.33% of the homogametic haploid set. The banding pattern of the chromosomes is compared with that obtained by aid of the quinacrine dihydrochloride fluorescence technique. After its use a banding pattern results which is similar to, but less distinct than, that found after the renaturation procedure.  相似文献   

4.
Physical properties of ribosomal proteins obtained with or without denaturating agents were compared. CD measurements and NMR studies have shown that proteins L2, L19, L24 and L30 isolated under denaturing conditions have the same properties as those prepared avoiding denaturating agents. CD and NMR spectra of proteins L1, L6, L11, L23, L25 and L29 obtained by us under denaturating conditions practically coincide with the data for the same proteins reported under 'mild' conditions. These findings suggest that the differences of reported physical properties can be due to different procedures of protein renaturation rather than to the methods of their isolation.  相似文献   

5.
Upon exposure of rabbit muscle creatine kinase (ATP: creatine N-phosphotransferase, EC 2.7.3.2) that has been dansylated at the two reactive lysines to 8 M urea, the maximum emission of the extrinsic fluorophore shifts 4 nm towards the blue, this being accompanied by a small decrease in intensity. The fluorescence emission and excitation spectra of the reassembled and native proteins are the same. Denaturation is accompanied by a rapid decrease in fluorescence which is complete in 10 s. This suggests that denaturation is accompanied by an early disorganization at the catalytic center, where the reactive lysines are located. Reassembly is associated with a rapid increase in dansyl fluorescence followed by a slower decrease that is complete in 6 min. Since reactivation is not complete until 20 min, minor additional structural changes are needed for the reacquisition of catalytic activity. The intrinsic protein fluorescence (eight tryptophans per dimer) of dansylated creatine kinase is approximately 60% less than that of the unlabelled enzyme, which may be attributed to resonance energy transfer, indicating that the reactive lysine is located near one or more of the tryptophans. A more limited quenching of intrinsic fluorescence is observed when dansylated creatine kinase is exposed to 8 M urea. Reassembly, monitored by a decrease in intrinsic fluorescence, reveals that the dansylated protein achieves its final fluorescence after 18 min of renaturation compared with 30 min for unlabelled enzyme. The powerful quenching by the dansyl group may limit the ability to monitor changes in the tryptophan environment. Kinetics of fluorescence polarization changes during denaturation are consistent with a mechanism involving rapid dissociation, followed by a subunit disorganization and possible aggregation. Reassembly would appear to involve first a refolding of the disorganized monomers and subsequent association. These results correspond to our previous observations that subunit renaturation precedes dimerization.  相似文献   

6.
W Teschner  J R Garel 《Biochemistry》1989,28(4):1912-1916
The folding and association pathway of the allosteric phosphofructokinase from Escherichia coli has been investigated after complete denaturation of the protein in guanidine hydrochloride by spectroscopical methods, fluorescence and circular dichroism. Three successive processes can be observed during the renaturation of this protein. First, a fast reaction, detected by fluorescence, results in the formation of a (partially) structured monomer. Second, two monomers associate into a dimeric species. This step involves the shielding of the unique tryptophan residue, Trp 311, from the aqueous solvent, and it corresponds to the formation of the interface containing the effector binding site. The presence of ATP during renaturation increases the rate of formation of this dimeric species. The other ligands of the enzyme have no effect on this reaction as well as on the whole reactivation. Finally, the enzymatic activity is regained during the third slowest step. This last reaction is due to the association of two dimers into the native tetrameric structure. The presence of fructose 6-phosphate does not increase the rate of reactivation, even though this ligand strongly stabilizes the native enzyme against denaturation by bridging the interface corresponding to the active site. The self-assembly of phosphofructokinase from E. coli from its unfolded and separated chains follows a specific order in the formation of the interactions between subunits and involves a dimeric intermediate with a defined geometry.  相似文献   

7.
This paper describes a rapid and inexpensive method for homogeneous enzyme preparation from SDS/polyacrylamide gels with subsequent renaturation. The method was optimized for an enzyme of pyrimidine metabolism, thymidine-5'-triphosphatase (dTTPase), present in human serum in small amounts. After gel electrophoresis, the enzyme was eluted from gel pieces in an elution chamber based on a tube gel electrophoresis system. Renaturation conditions were optimized in preliminary tests. The best results were obtained with an initial acetone precipitation to remove sodium dodecyl sulfate. The precipitate was then dissolved in 8 M guanidine hydrochloride and diluted 50-fold for renaturation. Adding 1.5 mg/ml lauryl maltoside to the renaturation buffer, followed by subsequent dialysis of the renaturating samples, improved the renaturation yield up to 95%. This method was used to purify dTTPase to homogeneity from a partially purified sample, and to determine the molecular mass of the subunits. The procedure can also be applied to other enzymes and could give rise to a general strategy for enzyme purification.  相似文献   

8.
Roy I  Gupta MN 《Protein engineering》2003,16(12):1153-1157
A pH-responsive polymer Eudragit S-100 has been found to assist in correct folding of alpha-chymotrypsin denatured with 8 M urea and 100 mM dithiothreitol at pH 8.2. The complete activity could be regained within 10 min during refolding. Both native and refolded enzymes showed emission of intrinsic fluorescence with lambda(max) of 342 nm. Gel electrophoresis showed that the presence of Eudragit S-100 led to dissociation of multimers followed by the appearance of a band at the monomer position. The unfolding (by 8 M urea) and folding (assisted by the polymer) also led to complete renaturation of alpha-chymotrypsin initially denatured by 90% dioxane. The implications of the data in recovery of enzyme activity from inclusion bodies and the interesting possibility in the in vivo context of reversing protein aggregation in amyloid-based diseases have been discussed.  相似文献   

9.
本文利用荧光、紫外差光谱研究了根霉葡萄糖淀粉酶在盐酸胍变性后的复性、复活动力学。结果表明,该酶在小于4mol/L盐酸胍中变性是可逆的,其复性过程遵循一级反应方程。酶复活过程是由两个一级反应组成的复合反应,构象变化速度与复活过程中较快的反应速度相差无几,这可能是在Trp及Tyr微区的构象变化基本完成之后,酶活力恢复还没有完成造成的。  相似文献   

10.
Biological sulfide oxidation is a reaction occurring in all three domains of life. One enzyme responsible for this reaction in many bacteria has been identified as sulfide:quinone oxidoreductase (SQR). The enzyme from Rhodobacter capsulatus is a peripherally membrane-bound flavoprotein with a molecular mass of approximately 48 kDa, presumably acting as a homodimer. In this work, SQR from Rb. capsulatus has been modified with an N-terminal His tag and heterologously expressed in and purified from Escherichia coli. Three cysteine residues have been shown to be essential for the reductive half-reaction by site-directed mutagenesis. The catalytic activity has been nearly completely abolished after mutation of each of the cysteines to serine. A decrease in fluorescence on reduction by sulfide as observed for the wild-type enzyme has not been observed for any of the mutated enzymes. Mutation of a conserved valine residue to aspartate within the third flavin-binding domain led to a drastically reduced substrate affinity, for both sulfide and quinone. Two conserved histidine residues have been mutated individually to alanine. Both of the resulting enzymes exhibited a shift in the pH dependence of the SQR reaction. Polysulfide has been identified as a primary reaction product using spectroscopic and chromatographic methods. On the basis of these data, reaction mechanisms for sulfide-dependent reduction and quinone-dependent oxidation of the enzyme and for the formation of polysulfide are proposed.  相似文献   

11.
Subunit structure of Escherichia coli exonuclease VII   总被引:5,自引:0,他引:5  
Exonuclease VII has been purified 7,500-fold to 87% homogeneity from Escherichia coli K12 using a new purification procedure. The enzyme has been shown to be composed of two nonidentical subunits of 10,500 and 54,000 daltons. This has been confirmed by restoration of exonuclease VII activity after renaturation of denatured and purified subunits. The structure of the native enzyme consists of one large subunit and four small subunits. We have previously isolated exonuclease VII mutant strains containing defects which map at two distinct loci. Subunit-mixing experiments utilizing wild type enzyme and temperature-sensitive enzyme produced by an xseB mutant strain have shown that the xseB gene codes for the small subunit of the enzymes.  相似文献   

12.
The bacterial enzyme sulfane sulfurtransferase has been studied using spectroscopic techniques. The enzyme was characterized in terms of its near-UV absorption spectrum, molar ellipticity, intrinsic fluorescence spectra and the effects of general and ionic quenching reagents upon its fluorescence. Fluorescence model studies are consistent with sulfane sulfurtransferase having only a single tryptophan residue, which accounts for its low UV absorption coefficient and suggested that this residue is at least partially exposed to solvent. Second derivative absorption spectroscopy studies revealed that most of the bacterial enzyme's tyrosine residues are exposed to solvent. Unlike the better known sulfurtransferase, bovine liver rhodanese, sulfane sulfurtransferase does not undergo a detectable increase in quantum yield when shifting from the sulfur-containing covalent enzyme intermediate to the free enzyme form (which lacks sulfur) during catalysis. CD studies suggest that sulfane sulfurtransferase has a significantly higher proportion of alpha-helix than rhodanese. The renaturation of sulfane sulfurtransferase denatured in 6 M guanidine was shown to be rapid and complete provided that the enzyme had not been oxidized while in the denatured state. Sulfane sulfurtransferase, like rhodanese, catalyzes the transfer of sulfur from thiosulfate to cyanide via a persulfide intermediate, and displays remarkably similar kinetics in this process (Aird, B.A., Heinrikson, R.L. and Westley, J. (1987) J. Biol. Chem 262, 17327-17335). In light of this, the results of the structural studies with sulfane sulfurtransferase are compared and contrasted to data from similar experiments with rhodanese in hopes that they would provide insight about which phenomena observed with rhodanese are intrinsic to the process of transferring sulfur atoms.  相似文献   

13.
A quantitative histochemical method (Trident) has been adapted to measure the activities of 4 enzymes, succinate dehydrogenase (SD), isocitrate dehydrogenase (ICD), glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6-PGD), within the liver acini of the rat during the postnatal developmental period. Quantitative changes of these enzymes in livers of rats of 25 g and 50 g body weight were studied, with particular emphasis on the activity-rest cycle. The results indicate a time-dependent heterogeneous distribution of enzymes along the acinar zones and the pattern of localization is age-dependent. When the mean enzyme activity from each group in relation to the time of the day are compared, a mirror image of each other could be seen. In general, a high enzyme activity has been observed during the resting phase in 25-g rats and low in 50-g rats. During the developmental period, the mean ICD activity is diminished, whereas G6PD and 6-PGD are augmented, and SD activity remains unchanged.  相似文献   

14.
G R Parr  G G Hammes 《Biochemistry》1975,14(8):1600-1605
The denaturation of rabbit skeletal muscle phosphofructokinase by guanidine hydrochloride has been studied using fluorescence, light scattering, and enzyme activity measurements. The transition from fully active tetramer (0.1 M potassium phosphate (pH 8.0) at 10 and 23 degrees) to unfolded polypeptide chains occurs in two phases as measured by changes in the fluorescence spectrum and light scattering of the protein: dissociation to monomers at low guanidine hydrochloride concentrations (similar to 0.8 M) followed by an unfolding of the polypeptide chains, which presumably results in a random coil state, at high concentrations of denaturant (greater than 3.5 M). The initial transition can be further divided into two distinct stages. The native enzyme is rapidly dissociated to inactive monomers which then undergo a much slower conformational change that alters the fluorescence spectrum of the protein. The dissociation is complete within 2 min and is reversible, but the conformational change requires about 2 hr for completion and is not reversible under a variety of conditions, including the presence of substrates and allosteric effectors. The conformationally altered protomer reaggregates to form a precipitate at 23 degrees, but is stable below 10 degrees. The second major phase of the denaturation is fully reversible. A simple mechanism is proposed to account for the results, and its implications for the corresponding renaturation process are discussed.  相似文献   

15.
6-thioguanine (6-TG) is an antineoplastic, nucleobase guanine, purine analog drug belongs to thiopurine drug-family of antimetabolites. In the present study, we report an experimental approach towards interaction mechanism of 6-TG with human serum albumin (HSA) and examine the chemical stability of HSA in the presence of denaturants such as guanidine hydrochloride (GdnHCl) and urea. Interaction of 6-TG with HSA has been studied by various spectroscopic and spectropolarimeteric methods to investigate what short of binding occurs at physiological conditions. 6-TG binds in the hydrophobic cavity of subdomain IIA of HSA by static quenching mechanism which induces conformation alteration in the protein structure. That helpful for further study of denaturation process where change in secondary structures causes unfolding of protein that also responsible for severance of domain III from rest of the protein part. We have also performed molecular simulation and molecular docking study in the presence of denaturating agents to determine the binding property of 6-TG and the effect of denaturating agents on the structural activity of HSA. We had found that GdnHCl is more effective denaturating agent when compared to urea. Hence, this study provides straight evidence of the binding mechanism of 6-TG with HSA and the formation of intermediate or unfolding transition that causes unfolding of HSA.  相似文献   

16.
Thymidylate synthase (TS) is a central target for the design of chemotherapeutic agents due to its vital role in DNA synthesis. Structural studies of binary complexes between Escherichia coli TS and various nucleotides suggest the chemotherapeutic agent FdUMP and the natural ligand dUMP bind similarly. We show, however, that FdUMP binding to human TS yields a substantially greater decrease in fluorescence than does dUMP. Because the difference in quenching due to ligand binding was approximately two-fold and this difference was not seen when using ecTS, the intriguing result indicated a significant difference in the mode of FdUMP binding to the human enzyme. We compared the binding affinities of dUMP, FdUMP, and TMP to TS from both species and found no significant differences for the individual ligands. Because binding affinities were not different among the ligands, the method of continuous variation was employed to determine binding stoichiometry. Similar to that found for dUMP binding to human and ecTS, FdUMP displayed single site occupancy with both enzymes. These results show that nucleotide binding differences exist for FdUMP and dUMP binding to the human enzyme. The observed differences are not due to differences in stoichiometry or ligand affinity. Therefore, although the crystal structure of human TS with various nucleotide ligands has not been solved, these results show that the differences observed using fluorescence methods result from as yet unidentified differential interactions between the human enzyme and nucleotide ligands.  相似文献   

17.
The detection of kinetic intermediate(s) during refolding of rhodanese   总被引:1,自引:0,他引:1  
Recent studies showed that the enzyme rhodanese could be reversibly unfolded in guanidinium chloride (GdmCl) if aggregation and oxidation were minimized. Further, these equilibrium studies suggested the presence of intermediate(s) during refolding (Tandon, S., and Horowitz, P. (1989) J. Biol. Chem. 264, 9859-9866). The present work shows that native and refolded enzymes are very similar in structural and functional characteristics. Kinetics of denaturation/renaturation were used to detect the folding intermediate(s). The shift in fluorescence wavelength maximum was used to monitor the structural changes during the process. First order plots of the structural changes during unfolding and refolding show nonlinear curves. The refolding occurs in at least two phases. The first phase is very fast (t1/2 much less than 30 s) and accounts for the partial regain in the structure but not in the activity. The second phase is slow (t1/2 = 2.9 h) during which the enzyme fully regains its structure along with the activity. The fractional renaturation of rhodanese due to the fast phase, monitored in various concentrations of GdmCl, describes a transition centered at 3.5 M GdmCl which is very similar to the higher of the two transitions observed in the reversible refolding. All of these findings support the presence of detectable intermediate(s) during folding of rhodanese.  相似文献   

18.
A hydroxypyruvate reductase has been induced in Pseudomonas acidovorans by growth on glyoxylate. The enzyme has been purified to homogeneity as assessed by the criteria of analytical ultracentrifugation and analytical disc gel electrophoresis. It has a molecular weight of approximately 85,000 and is composed of two identical subunits. The subunits are not interconnected by disulfide bonds although the enzyme has 4 mol of half-cystine per mol of enzyme. The enzyme catalyzes the reversible conversion of hydroxypyruvate to D(minus)-glycerate in the presence of NADH. Glyoxylate cannot replace hydroxypyruvate as a substrate and is a competitive inhibitor of hydroxypyruvate reduction. The activity of the enzyme toward hydroxypyruvate is anion-modulated; the activity of the enzyme toward D(minus)-glycerate is unaffected by anions but is increased by tris-(hydroxymethyl)aminomethane. The subunits of the induced hydroxypyruvate reductase can be renatured. After the enzyme is dissociated in solutions of 6.0 M guanidine hydrochloride containing 0.1 M 2-mercaptoethanol, optimum renaturation occurs when subunits are diluted into a renaturation solvent consisting of 0.04 M Trischloride, pH 7.4, containing 25% glycerol, 25 mM 2-mercaptoethanol, and 0.14 MM NADH. NAD is an inhibitor of renaturation and therefore cannot substitute for NADH. The optimal temperature of dilution and subsequent incubation is 15 degrees, and increases in protein concentration up to 1.2 mg/ml, the highest concentration tested, improve both the rate of renaturation and the yield of active material. The half-time of renaturation at a protein concentration of 1.2 mg/ml was 1 min. The kinetics of renaturation is second order, i.e., is compatible with a bimolecular reaction preducted by the association of two similar subunits. The physical and kinetic parameters of the renatured protein are the same as those of the native enzyme.  相似文献   

19.
It is assumed that amino acid sequence differences in highly homologous enzymes would be found at the peripheral level, subtle changes that would not necessarily affect catalysis. Here, we demonstrate that, using the same set of mutations at the level of the interface loop 3, the activity of a triosephosphate isomerase monomeric enzyme is ten times higher than that of a homologous enzyme with 74% identity and 86% similarity, whereas the activity of the native, dimeric enzymes is essentially the same. This is an example of how the dimeric biological unit evolved to compensate for the intrinsic differences found at the monomeric species level. Biophysical techniques of size exclusion chromatography, dynamic light scattering, X-ray crystallography, fluorescence and circular dichroism, as well as denaturation/renaturation assays with guanidinium hydrochloride and ANS binding, allowed us to fully characterize the properties of the new monomer.  相似文献   

20.
One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme–water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号