首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
DNA polymerase III holoenzyme (holoenzyme) is the 10-subunit replicase of the Escherichia coli chromosome. In this report, pure preparations of delta, delta', and a gamma chi psi complex are resolved from the five protein gamma complex subassembly. Using these subunits and other holoenzyme subunits isolated from overproducing plasmid strains of E. coli, the rapid and highly processive holoenzyme has been reconstituted from only five pure single subunits: alpha, epsilon, gamma, delta, and beta. The preceding report showed that of the three subunits in the core polymerase, only a complex of alpha (DNA polymerase) and epsilon (3'-5' exonuclease) are required to assemble a processive holoenzyme on a template containing a preinitiation complex (Studwell, P.S., and O'Donnell, M. (1990) J. Biol. Chem. 265, 1171-1178). This report shows that of the five proteins in the gamma complex only a heterodimer of gamma and delta is required with the beta subunit to form the ATP-activated preinitiation complex with a primed template. Surprisingly, the delta' subunit does not form an active complex with gamma but forms a fully active heterodimer complex with the tau subunit (as does delta). Hence, the tau delta' and gamma delta heterodimers are fully active in the preinitiation complex reaction with beta and primed DNA. Holoenzymes reconstituted using the alpha epsilon complex, beta subunit, and either gamma delta or tau delta' are fully processive in DNA synthesis, and upon completing the template they rapidly cycle to a new primed template endowed with a preinitiation complex clamp. Since the holoenzyme molecule contains all of these accessory subunits (gamma, delta, tau, delta', and beta) in all likelihood it has the capacity to form two preinitiation complex clamps simultaneously at two primer termini. Two primer binding components within one holoenzyme may mediate its rapid cycling to multiple primers on the lagging strand and also provides functional evidence for the hypothesis of holoenzyme as a dimeric polymerase capable of simultaneous replication of both leading and lagging strands of a replication fork.  相似文献   

3.
DNA polymerase III holoenzyme was assembled from pure proteins onto a primer template scaffold. The assembly process could be divided into two stages. In the time-consuming first stage, beta subunit and gamma.delta subunit complex were required in forming a tightly bound ATP-activated "preinitiation complex" with a single-stranded DNA bacteriophage circle uniquely primed with a synthetic pentadecadeoxyribonucleotide. This finding substantiates an earlier study using crude protein preparations in a homopolymer system lacking Escherichia coli single-stranded DNA binding protein (Wickner, S. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 3511-3515). In the second stage, the polymerase III core and the tau subunit rapidly seek out and bind the preinitiation complex to form DNA polymerase III holoenzyme capable of rapid and entirely processive replication of the circular DNA. ATP is not required beyond formation of the preinitiation complex. It is remarkable that the fully assembled DNA polymerase III holoenzyme is so stably bound to the primed DNA circle (4-min half-time of dissociation), yet upon completing a round of synthesis the polymerase cycles within 10 s to a new preinitiation complex on a challenge primed DNA circle. Efficient polymerase cycling only occurred when challenge primed DNA was endowed with a preinitiation complex implying that cycling is mediated by a polymerase subassembly which dissociates from its accessory proteins and associates with a new preinitiation complex. These subunit dynamics suggest mechanisms for polymerase cycling on the lagging strand of replication forks in a growing chromosome.  相似文献   

4.
Escherichia coli DNA polymerase III holoenzyme contains 10 different subunits which assort into three functional components: a core catalytic unit containing DNA polymerase activity, the beta sliding clamp that encircles DNA for processive replication, and a multisubunit clamp loader apparatus called gamma complex that uses ATP to assemble the beta clamp onto DNA. We examine here the function of the psi subunit of the gamma complex clamp loader. Omission of psi from the holoenzyme prevents contact with single-stranded DNA-binding protein (SSB) and lowers the efficiency of clamp loading and chain elongation under conditions of elevated salt. We also show that the product of a classic point mutant of SSB, SSB-113, lacks strong affinity for psi and is defective in promoting clamp loading and processive replication at elevated ionic strength. SSB-113 carries a single amino acid replacement at the penultimate residue of the C-terminus, indicating the C-terminus as a site of interaction with psi. Indeed, a peptide of the 15 C-terminal residues of SSB is sufficient to bind to psi. These results establish a role for the psi subunit in contacting SSB, thus enhancing the clamp loading and processivity of synthesis of the holoenzyme, presumably by helping to localize the holoenzyme to sites of SSB-coated ssDNA.  相似文献   

5.
In the presence of ATP, the beta subunit of the Escherichia coli DNA polymerase III holoenzyme can induce a stable initiation complex with the other holoenzyme subunits and primed DNA that is capable of highly processive synthesis. We have recently demonstrated that the ATP requirement for processive synthesis can be bypassed by an excess of the beta subunit (Crute, J., LaDuca, R., Johanson, K., McHenry, C., and Bambara, R. (1983) J. Biol. Chem. 258, 11344-11349). To examine the complex formed with excess beta subunit, and the lengths of the products of processive synthesis, we have designed a uniquely primed DNA template. Poly(dA)4000 was tailed with dCTP by terminal deoxynucleotidyl transferase and the resulting template annealed to oligo(dG)12-18. In the presence of excess beta, the lengths of processively extended primers nearly equaled the full-length of the DNA template. Similar length synthesis occurred in the presence or absence of spermidine or single-stranded DNA-binding protein. When the beta subunit was present at normal holoenzyme stoichiometry it could induce highly processive synthesis without ATP, although inefficiently. Both ATP and excess beta increased the amount of initiation complex formation, but complexes produced with excess beta did so without the time delay observed with ATP, suggesting different mechanisms for formation. Almost 50% of initiation complexes formed without ATP survived a 30-min incubation with anti-beta IgG, reflecting a stability similar to those formed with ATP. The ability to form initiation complexes in the absence of ATP permitted the demonstration that cycling of the holoenzyme to a new primer, after chain termination with a dideoxynucleotide, is not affected by the presence of ATP.  相似文献   

6.
The Escherichia coli DNA polymerase III gamma complex clamp loader assembles the ring-shaped beta sliding clamp onto DNA. The core polymerase is tethered to the template by beta, enabling processive replication of the genome. Here we investigate the DNA substrate specificity of the clamp-loading reaction by measuring the pre-steady-state kinetics of DNA binding and ATP hydrolysis using elongation-proficient and deficient primer/template DNA. The ATP-bound clamp loader binds both elongation-proficient and deficient DNA substrates either in the presence or absence of beta. However, elongation-proficient DNA preferentially triggers gamma complex to release beta onto DNA with concomitant hydrolysis of ATP. Binding to elongation-proficient DNA converts the gamma complex from a high affinity ATP-bound state to an ADP-bound state having a 10(5)-fold lower affinity for DNA. Steady-state binding assays are misleading, suggesting that gamma complex binds much more avidly to non-extendable primer/template DNA because recycling to the high affinity binding state is rate-limiting. Pre-steady-state rotational anisotropy data reveal a dynamic association-dissociation of gamma complex with extendable primer/templates leading to the diametrically opposite conclusion. The strongly favored dynamic recognition of extendable DNA does not require the presence of beta. Thus, the gamma complex uses ATP binding and hydrolysis as a mechanism for modulating its interaction with DNA in which the ATP-bound form binds with high affinity to DNA but elongation-proficient DNA substrates preferentially trigger hydrolysis of ATP and conversion to a low affinity state.  相似文献   

7.
We have previously demonstrated that the addition of a stoichiometric excess of the beta subunit of Escherichia coli DNA polymerase III holoenzyme to DNA polymerase III or holoenzyme itself can lead to an ATP-independent increase in the processivity of these enzyme forms (Crute, J. J., LaDuca, R. J., Johanson, K. O., McHenry, C. S., and Bambara, R. A. (1983) J. Biol. Chem. 258, 11344-11349). Here, we show that the beta subunit can interact directly with the catalytic core of the holoenzyme, DNA polymerase III, generating a new form of the enzyme with enhanced catalytic and processive capabilities. The addition of saturating levels of the beta subunit to the core DNA polymerase III enzyme results in as much as a 7-fold stimulation of synthetic activity. Two populations of DNA products were generated by the DNA polymerase III X beta enzyme complex. Short products resulting from the addition of 5-10 nucleotides/primer fragment were generated by DNA polymerase III in the presence and absence of added beta subunit. A second population of much longer products was generated only in beta-supplemented DNA polymerase III reactions. The DNA polymerase III-beta reaction was inhibited by single-stranded DNA binding protein and was unaffected by ATP, distinguishing it from the holoenzyme-catalyzed reaction. Complex formation of the DNA polymerase III core enzyme with beta increased the residence time of the enzyme on synthetic DNA templates. Our results demonstrate that the beta stimulation of DNA polymerase III can be attributed to a more efficient and highly processive elongation capability of the DNA polymerase III X beta complex. They also prove that at least part of beta's normal contribution to the DNA polymerase III holoenzyme reaction takes place through interaction with DNA polymerase III core enzyme components to produce the essential complex necessary for efficient elongation in vivo.  相似文献   

8.
The gamma complex (gamma delta delta' chi psi) subassembly of DNA polymerase III holoenzyme transfers the beta subunit onto primed DNA in a reaction which requires ATP hydrolysis. Once on DNA, beta is a "sliding clamp" which tethers the polymerase to DNA for highly processive synthesis. We have examined beta and the gamma complex to identify which subunit(s) hydrolyzes ATP. We find the gamma complex is a DNA dependent ATPase. The beta subunit, which lacks ATPase activity, enhances the gamma complex ATPase when primed DNA is used as an effector. Hence, the gamma complex recognizes DNA and couples ATP hydrolysis to clamp beta onto primed DNA. Study of gamma complex subunits showed no single subunit contained significant ATPase activity. However, the heterodimers, gamma delta and gamma delta', were both DNA-dependent ATPases. Only the gamma delta ATPase was stimulated by beta and was functional in transferring the beta from solution to primed DNA. Similarity in ATPase activity of DNA polymerase III holoenzyme accessory proteins to accessory proteins of phage T4 DNA polymerase and mammalian DNA polymerase delta suggests the basic strategy of chromosome duplication has been conserved throughout evolution.  相似文献   

9.
In Escherichia coli, the circular beta sliding clamp facilitates processive DNA replication by tethering the polymerase to primer-template DNA. When synthesis is complete, polymerase dissociates from beta and DNA and cycles to a new start site, a primed template loaded with beta. DNA polymerase cycles frequently during lagging strand replication while synthesizing 1-2-kilobase Okazaki fragments. The clamps left behind remain stable on DNA (t(12) approximately 115 min) and must be removed rapidly for reuse at numerous primed sites on the lagging strand. Here we show that delta, a single subunit of DNA polymerase III holoenzyme, opens beta and slips it off DNA (k(unloading) = 0.011 s(-)(1)) at a rate similar to that of the multisubunit gamma complex clamp loader by itself (0.015 s(-)(1)) or within polymerase (pol) III* (0.0065 s(-)(1)). Moreover, unlike gamma complex and pol III*, delta does not require ATP to catalyze clamp unloading. Quantitation of gamma complex subunits (gamma, delta, delta', chi, psi) in E. coli cells reveals an excess of delta, free from gamma complex and pol III*. Since pol III* and gamma complex occur in much lower quantities and perform several DNA metabolic functions in replication and repair, the delta subunit probably aids beta clamp recycling during DNA replication.  相似文献   

10.
The 10 distinctive polypeptides of DNA polymerase III holoenzyme, purified as individual subunits or complexes, could be reconstituted to generate a polymerase with the high catalytic rate of the isolated intact holoenzyme. Functions and interactions of the subunits can be inferred from partial assemblies of the pol III core (alpha, epsilon, and theta subunits) with auxiliary subunits. The core possesses the polymerase and proofreading activities; the auxiliary subunits provide the core with processivity, the capacity to replicate long stretches of DNA without dissociating from the template. In a sequence of reconstruction steps, the beta subunit binds the primed template in an ATP-dependent manner through the catalytic action of a complex made up of the gamma, delta, delta', chi, and psi polypeptides. With the beta subunit in place, a processive polymerase is produced upon addition of the core. When the tau subunit is lacking, binding of polymerase to the primed template is less efficient and stable. The tau-less reconstituted polymerase is more prone to dissociation upon encountering secondary structures in the template in its path, such as a hairpin region in the single strand or a duplex region formed by a strand annealed to the template. With the tau subunit present, the interaction of the core.beta complex (the basic unit of a processive polymerase) with the primed template is strengthened. The tau-containing reconstituted polymerase can replicate DNA continuously through secondary structures in the template. The two distinctive kinds of processivity demonstrated by the tau-less and tau-containing reconstituted polymerases fit nicely into a scheme in which, organized as an asymmetric dimeric holoenzyme, the tau half is responsible for continuous synthesis of one strand, and the less stable half for discontinuous synthesis of the other.  相似文献   

11.
An interesting property of the Escherichia coli DNA polymerase II is the stimulation in DNA synthesis mediated by the DNA polymerase III accessory proteins beta,gamma complex. In this paper we have studied the basis for the stimulation in pol II activity and have concluded that these accessory proteins stimulate pol II activity by increasing the processivity of the enzyme between 150- and 600-fold. As is the case with pol III, processive synthesis by pol II requires both beta,gamma complex and SSB protein. Whereas the intrinsic velocity of synthesis by pol II is 20-30 nucleotides per s with or without the accessory proteins, the processivity of pol II is increased from approximately five nucleotides to greater than 1600 nucleotides incorporated per template binding event. The effect of the accessory proteins on the rate of replication is far greater on pol III than on pol II; pol III holoenzyme is able to complete replication of circular single-stranded M13 DNA in less than 20 s, whereas pol II in the presence of the gamma complex and beta requires approximately 5 min. We have investigated the effect of beta,gamma complex proteins on bypass of a site-specific abasic lesion by E. coli DNA polymerases I, II, and III. All three polymerases are extremely inefficient at bypass of the abasic lesion. We find limited bypass by pol I with no change upon addition of accessory proteins. pol II also shows limited bypass of the abasic site, dependent on the presence of beta,gamma complex and SSB. pol III shows no significant bypass of the abasic site with or without beta,gamma complex.  相似文献   

12.
DNA polymerase III holoenzyme (holenzyme) has an ATPase activity elicited only by a primed DNA template. Reaction of preformed ATP.holoenzyme complex with a primed template results in hydrolysis of the ATP bound to the holoenzyme, release of ADP and Pi, and formation of an initiation complex between holoenzyme and the primed template. Approximately two ATP molecules are hydrolyzed for each initiation complex formed, a value in keeping with the number bound in the ATP.holoenzyme complex. The possibility that the latter and the initiation complex contain two holoenzyme molecules is supported by the presence of two beta monomers in the initiation complex. Holoenzyme action in the absence of ATP resembles that of pol III (the holoenzyme core) or DNA polymerase III (holoenzyme lacking the beta subunit), with or without ATP, in sensitivity to salt and in processivity of elongation. The initiation complex formed by ATP-activated holoenzyme resists a level of KCl (150 mM) that completely inhibits nonactivated holoenzyme and the incomplete forms of the holoenzyme, and displays a processivity at least 20 times greater. Upon completing replication of available template, holoenzyme can dissociate and form an initiation complex with another primed template, provided ATP is available to reactivate the holoenzyme. By inference, no essential subunits are lost in the cycle of initiation, elongation and dissociation.  相似文献   

13.
The Escherichia coli beta dimer is a ring-shaped protein that encircles DNA and acts as a sliding clamp to tether the replicase, DNA polymerase III holoenzyme, to DNA. The gamma complex (gammadeltadelta'chipsi) clamp loader couples ATP to the opening and closing of beta in assembly of the ring onto DNA. These proteins are functionally and structurally conserved in all cells. The eukaryotic equivalents are the replication factor C (RFC) clamp loader and the proliferating cell nuclear antigen (PCNA) clamp. The delta subunit of the E. coli gamma complex clamp loader is known to bind beta and open it by parting one of the dimer interfaces. This study demonstrates that other subunits of gamma complex also bind beta, although weaker than delta. The gamma subunit like delta, affects the opening of beta, but with a lower efficiency than delta. The delta' subunit regulates both gamma and delta ring opening activities in a fashion that is modulated by ATP interaction with gamma. The implications of these actions for the workings of the E. coli clamp loading machinery and for eukaryotic RFC and PCNA are discussed.  相似文献   

14.
The internal workings of a DNA polymerase clamp-loading machine.   总被引:14,自引:2,他引:12       下载免费PDF全文
Replicative DNA polymerases are multiprotein machines that are tethered to DNA during chain extension by sliding clamp proteins. The clamps are designed to encircle DNA completely, and they are manipulated rapidly onto DNA by the ATP-dependent activity of a clamp loader. We outline the detailed mechanism of gamma complex, a five-protein clamp loader that is part of the Escherichia coli replicase, DNA polymerase III holoenzyme. The gamma complex uses ATP to open the beta clamp and assemble it onto DNA. Surprisingly, ATP is not needed for gamma complex to crack open the beta clamp. The function of ATP is to regulate the activity of one subunit, delta, which opens the clamp simply by binding to it. The delta' subunit acts as a modulator of the interaction between delta and beta. On binding ATP, the gamma complex is activated such that the delta' subunit permits delta to bind beta and crack open the ring at one interface. The clamp loader-open clamp protein complex is now ready for an encounter with primed DNA to complete assembly of the clamp around DNA. Interaction with DNA stimulates ATP hydrolysis which ejects the gamma complex from DNA, leaving the ring to close around the duplex.  相似文献   

15.
DNA replication in bacteria is performed by a specialized multicomponent replicase, the DNA polymerase III holoenzyme, that consist of three essential components: a polymerase, the beta sliding clamp processivity factor, and the DnaX complex clamp-loader. We report here the assembly of the minimal functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme consists of alpha (pol III catalytic subunit), beta (sliding clamp processivity factor), and the essential DnaX (tau/gamma), delta and delta' components of the DnaX complex. We show with purified recombinant proteins that these five components are required for rapid and processive DNA synthesis on long single-stranded DNA templates. Subunit interactions known to occur in DNA polymerase III holoenzyme from mesophilic bacteria including delta-delta' interaction, deltadelta'-tau/gamma complex formation, and alpha-tau interaction, also occur within the Tth enzyme. As in mesophilic holoenzymes, in the presence of a primed DNA template, these subunits assemble into a stable initiation complex in an ATP-dependent manner. However, in contrast to replicative polymerases from mesophilic bacteria, Tth holoenzyme is efficient only at temperatures above 50 degrees C, both with regard to initiation complex formation and processive DNA synthesis. The minimal Tth DNA polymerase III holoenzyme displays an elongation rate of 350 bp/s at 72 degrees C and a processivity of greater than 8.6 kilobases, the length of the template that is fully replicated after a single association event.  相似文献   

16.
DNA polymerase III of Escherichia coli requires multiple auxiliary factors to enable it to serve as a replicative complex. We demonstrate that auxiliary components of the DNA polymerase III holoenzyme, the gamma delta complex and beta subunit, markedly stimulate DNA polymerase II on long single-stranded templates. DNA polymerase II activity is enhanced by single-stranded DNA binding protein, but the stimulation by gamma delta and beta can be observed either in the absence or presence of single-stranded DNA binding protein. In contrast with DNA polymerase III, the requirement of DNA polymerase II for gamma delta cannot be bypassed by large excesses of the beta subunit at low ionic strength in the absence of the single-stranded DNA binding protein. The product of the DNA polymerase II-gamma delta-beta reaction on a uniquely primed single-stranded circle is of full template length; the reconstituted enzyme apparently is incapable of strand displacement synthesis. The possible biological implications of these observations are discussed.  相似文献   

17.
The gamma complex of the Escherichia coli DNA polymerase III holoenzyme assembles the beta sliding clamp onto DNA in an ATP hydrolysis-driven reaction. Interactions between gamma complex and primer/template DNA are investigated using fluorescence depolarization to measure binding of gamma complex to different DNA substrates under steady-state and presteady-state conditions. Surprisingly, gamma complex has a much higher affinity for single-stranded DNA (K(d) in the nM range) than for a primed template (K(d) in the microM range) under steady-state conditions. However, when examined on a millisecond time scale, we find that gamma complex initially binds very rapidly and with high affinity to primer/template DNA but is converted subsequently to a much lower affinity DNA binding state. Presteady-state data reveals an effective dissociation constant of 1.5 nM for the initial binding of gamma complex to DNA and a dissociation constant of 5.7 microM for the low affinity DNA binding state. Experiments using nonhydrolyzable ATPgammaS show that ATP binding converts gamma complex from a low affinity "inactive" to high affinity "active" DNA binding state while ATP hydrolysis has the reverse effect, thus allowing cycling between active and inactive DNA binding forms at steady-state. We propose that a DNA-triggered switch between active and inactive states of gamma complex provides a two-tiered mechanism enabling gamma complex to recognize primed template sites and load beta, while preventing gamma complex from competing with DNA polymerase III core for binding a newly loaded beta.DNA complex.  相似文献   

18.
19.
The gamma complex couples ATP hydrolysis to the loading of beta sliding clamps onto DNA for processive replication. The gamma complex structure shows that the clamp loader subunits are arranged as a circular heteropentamer. The three gamma motor subunits bind ATP, the delta wrench opens the beta ring, and the delta' stator modulates the delta-beta interaction. Neither delta nor delta' bind ATP. This report demonstrates that the delta' stator contributes a catalytic arginine for hydrolysis of ATP bound to the adjacent gamma(1) subunit. Thus, the delta' stator contributes to the motor function of the gamma trimer. Mutation of arginine 169 of gamma, which removes the catalytic arginines from only the gamma(2) and gamma(3) ATP sites, abolishes ATPase activity even though ATP site 1 is intact and all three sites are filled. This result implies that hydrolysis of the three ATP molecules occurs in a particular order, the reverse of ATP binding, where ATP in site 1 is not hydrolyzed until ATP in sites 2 and/or 3 is hydrolyzed. Implications of these results to clamp loaders of other systems are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号