首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
香蕉生物技术研究进展   总被引:14,自引:0,他引:14  
近50年来香蕉的生产得到了稳步的发展,同时正遭受越来越严重的病虫、霜冻和台风的侵害。鲜食蕉雌雄性高度不育的特性,使得传统的育种方法难以进行香蕉的遗传改良。这些现状迫切要求香蕉生物技术的不断发展和深入。近10年来,在香蕉体细胞胚胎发生、原生质体培养、基因克隆和序列分析以及基因转化等方面都取得了可喜的成果,并预计于2006年完成香蕉基因组的测序 。  相似文献   

2.
Biotechnological techniques provide a viable alternative to help improve and increase the production of plant species of agricultural and economic importance, which have been affected over the years by climate change, increasing their susceptibility to pests and/or diseases, generating losses in production as well as a decrease in their regenerative and genetic diversity. The application of biotechnological techniques such as in vitro mutagenesis offers a viable option for the generation of crops that are resistant to the different factors caused by abiotic and biotic stress. In vitro mutagenesis has been used in an efficient way to generate genetic changes in different plant species. However, these methods have not been studied thoroughly in crops of agro-industrial interest, such as agave, which represents an economic resource of national importance and are considered as endemic species of Mexico. Therefore, this literary review aimed to focus on the studies that have been used for the genetic improvement of this species via mutagenesis techniques in plants in the agave genus. Therefore, the objective was to set a precedent for future genetic studies that aim to obtain more productive regenerants for various industries, such as food and pharmaceutical. It is also of great interest to compile information from basic research that helps understand and elucidate a model of possible defense mechanisms that are activated in the Agave genus.  相似文献   

3.
香蕉转基因技术研究进展   总被引:1,自引:0,他引:1  
香蕉具有高度不育性 ,难以通过传统育种的方法进行新品种的培育和遗传改良 ,因此转基因技术的建立尤为重要。综述近年来香蕉转基因技术 ,如受体材料、转基因方法、载体的构建等方面的研究进展  相似文献   

4.
Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.  相似文献   

5.
Yam (Dioscorea spp.) anthracnose, caused by Colletotrichum alatae, is the most devastating fungal disease of yam in West Africa, leading to 50%–90% of tuber yield losses in severe cases. In some instances, plants die without producing any tubers or each shoot may produce several small tubers before it dies if the disease strikes early. C. alatae affects all parts of the yam plant at all stages of development, including leaves, stems, tubers, and seeds of yams, and it is highly prevalent in the yam belt region and other yam-producing countries in the world. Traditional methods adopted by farmers to control the disease have not been very successful. Fungicides have also failed to provide long-lasting control. Although conventional breeding and genomics-assisted breeding have been used to develop some level of resistance to anthracnose in Dioscorea alata, the appearance of new and more virulent strains makes the development of improved varieties with broad-spectrum and durable resistance critical. These shortcomings, coupled with interspecific incompatibility, dioecy, polyploidy, poor flowering, and the long breeding cycle of the crop, have prompted researchers to explore biotechnological techniques to complement conventional breeding to speed up crop improvement. Modern biotechnological tools have the potential of producing fungus-resistant cultivars, thereby bypassing the natural bottlenecks of traditional breeding. This article reviews the existing biotechnological strategies and proposes several approaches that could be adopted to develop anthracnose-resistant yam varieties for improved food security in West Africa.  相似文献   

6.
7.
In vitro manipulation and propagation of medicinal plants   总被引:5,自引:0,他引:5  
Well developed techniques are currently available to help growers meet the demand of the pharmaceutical industry in the next century. These protocols are designed to provide optimal levels of carbohydrates, organic compounds (vitamins), mineral nutrients, environmental factors (e.g. light, gaseous environment, temperature, and humidity) and growth regulators required to obtain high regeneration rates of many plant species in vitro and thereby facilitate commercially viable micropropagation. Well-defined cell culture methods have also been developed for the production of several important secondary products. An overview of the regeneration of medicinal plants by direct and indirect organogenesis and by somatic embryogenesis from various types of explants is presented, and the use of these techniques combined with other biotechnological approaches to improve medicinal plants through somaclonal variation and genetic transformation is reviewed.  相似文献   

8.
Plant breeding is focused on continuously increasing crop production to meet the needs of an ever-growing world population, improving food quality to ensure a long and healthy life and address the problems of global warming and environment pollution, together with the challenges of developing novel sources of biofuels. The breeders’ search for novel genetic combinations, with which to select plants with improved traits to satisfy both farmers and consumers, is endless. About half of the dramatic increase in crop yield obtained in the second half of the last century has been achieved thanks to the results of genetic improvement, while the residual advance has been due to the enhanced management techniques (pest and disease control, fertilization, and irrigation). Biotechnologies provide powerful tools for plant breeding, and among these ones, tissue culture, particularly haploid and doubled haploid technology, can effectively help to select superior plants. In fact, haploids (Hs), which are plants with gametophytic chromosome number, and doubled haploids (DHs), which are haploids that have undergone chromosome duplication, represent a particularly attractive biotechnological method to accelerate plant breeding. Currently, haploid technology, making possible through gametic embryogenesis the single-step development of complete homozygous lines from heterozygous parents, has already had a huge impact on agricultural systems of many agronomically important crops, representing an integral part in their improvement programmes. The aim of this review was to provide some background, recent advances, and future prospective on the employment of haploid technology through gametic embryogenesis as a powerful tool to support plant breeding.  相似文献   

9.
《农业工程》2019,39(4):280-283
Cereal crops specifically maize, wheat, and rice have a prominent role in feeding the world's population. In the context of a growing population and a potential increase in food demand in coming years, yield output of cereals is certainly necessary. Concurrently, the production of these crops is challenged with several abiotic and biotic stresses. Salinity, a leading abiotic stress in global agriculture, significantly reduce growth, yield and overall production of cereals and if not managed through successive efforts, global food security will be uncertain in the future. Thus, employment of sustainable approaches in achieving the targets of food demands of increasing population needs focused attention. Integration of agronomic and biotechnological methods can manage salinity induced drastic effects on crops which would lead to increased crop productivity. In this review, we focus on employing seed priming techniques as possible salt stress management approaches in three major cereal crops (maize, rice, and wheat).  相似文献   

10.
Vanilla is the most commonly used natural flavoring agent in industries like food, flavoring, medicine, and fragrance. Vanillin can be obtained naturally, chemically, or through a biotechnological process. However, the yield from vanilla pods is low and does not meet market demand, and the use of vanillin produced by chemical synthesis is restricted in the food and pharmaceutical industries. As a result, the biotechnological process is the most efficient and cost-effective method for producing vanillin with consumer-demanding properties while also supporting industrial applications. Toxin-free biovanillin production, based on renewable sources such as industrial wastes or by-products, is a promising approach. In addition, only natural-labeled vanillin is approved for use in the food industry. Accordingly, this review focuses on biovanillin production from lactic acid bacteria (LAB), which is generally recognized as safe (GRAS), and the cost-cutting efforts that are utilized to improve the efficiency of biotransformation of inexpensive and readily available sources. LABs can utilize agro-wastes rich in ferulic acid to produce ferulic acid, which is then employed in vanillin production via fermentation, and various efforts have been applied to enhance the vanillin titer. However, different designs, such as response surface methods, using immobilized cells or pure enzymes for the spontaneous release of vanillin, are strongly advised.  相似文献   

11.
Hua D  Xu P 《Biotechnology advances》2011,29(6):654-660
2-Phenylethanol (2-PE) is an important aromatic alcohol with a rose-like fragrance. It has been widely applied in the cosmetic, perfume, and food industries and is mainly produced by chemical synthesis. An alternative method for the production of natural flavors and fragrances is the microbial transformation process, which is attracting increasing attention because it is an environmentally friendly process and the products are considered “natural”. The production of 2-PE from L-phenylalanine by biotransformation is possible through the Ehrlich pathway and considerable progress has been made in the development of this process. The present report reviews recent advances in biotechnological production of 2-PE, with emphasis on the strategies used to increase production and the applications of in situ product removal techniques. Future research should focus on product scale-up and product recovery processes for the industrialization of microbial processes.  相似文献   

12.
Whey, the liquid remaining after milk fat and casein have been separated from whole milk, is one of the major disposal problems of the dairy industry, and demands simple and economical solutions. In view of the fast developments in biotechnological techniques, alternatives of treating whey by transforming lactose present in it to value added products have been actively explored. Whey can be used directly as a substrate for the growth of different microorganisms to obtain various products such as ethanol, single-cell protein, enzymes, lactic acid, citric acid, biogas and so on. In this review, a comprehensive and illustrative survey is made to elaborate the various biotechnological innovations/techniques applied for the effective utilization of whey for the production of different bioproducts.  相似文献   

13.
Oil cakes and their biotechnological applications--a review   总被引:1,自引:0,他引:1  
Oil cakes have been in use for feed applications to poultry, fish and swine industry. Being rich in protein, some of these have also been considered ideal for food supplementation. However, with increasing emphasis on cost reduction of industrial processes and value addition to agro-industrial residues, oil cakes could be ideal source of proteinaceous nutrients and as support matrix for various biotechnological processes. Several oil cakes, in particular edible oil cakes offer potential benefits when utilized as substrate for bioprocesses. These have been utilized for fermentative production of enzymes, antibiotics, mushrooms, etc. Biotechnological applications of oil cakes also include their usages for vitamins and antioxidants production. This review discusses various applications of oil cakes in fermentation and biotechnological processes, their value addition by implementation in feed and energy source (for the production of biogas, bio-oil) as well.  相似文献   

14.
Worldwide interest in prebiotics have been increasing extensively both as food ingredients and pharmacological supplements, since they have beneficial properties for human health. Prebiotics not only stimulate the growth of healthy bacteria such as bifidobacteria and lactobacilli in the gut but also increase the resistance towards pathogens. In addition to this, they also act as dietary fiber, an energy source for intestinal cells after converting to short-chain fatty acids, a stimulator of immune systems, sugar replacer etc. Moreover, due to heat resistant properties, they are able to maintain their intact form during the baking process and allow them to be incorporated into every day food products. Thus, they can be interesting and useful ingredients in the development of novel functional foods. This review provides comprehensive information about the different biotechnological techniques employed in the production of prebiotics and their potential applications in different areas.  相似文献   

15.
Plant cell wall-degrading enzymes, such as cellulases, hemicellulases and pectinases, have been extensively studied because of their well documented biotechnological potential, mainly in the food industry. In particular, lytic enzymes from filamentous fungi have been the subject of a vast number of studies due both to their advantages as models for enzyme production and their characteristics. The demand for such enzymes is rapidly increasing, as are the efforts to improve their production and to implement their use in several industrial processes, with the goal of making them more efficient and environment-friendly. The present review focuses mainly on pectinolytic enzymes of filamentous fungi, which are responsible for degradation of pectin, one of the major components of the plant cell wall. Also discussed are the past and current strategies for the production of cell wall-degrading enzymes and their present applications in a number of biotechnological areas.  相似文献   

16.
香蕉是重要的热带水果之一,是世界第四大粮食作物。香蕉抗性相关的功能基因组学研究一直是香蕉研究的热点和核心。综述了近年来香蕉基因组测序、胁迫相关功能基因分离和鉴定等方面的最新研究进展,将有助于从源头上对香蕉进行创新性的研究,为香蕉遗传改良和新品种培育提供一定的理论依据。  相似文献   

17.
Application of rRNA-targeted oligonucleotide probes in biotechnology   总被引:4,自引:0,他引:4  
Ribosomal RNA-targeted oligonucleotide probes have become valuable tools for the detection of microorganisms involved in important biotechnological processes. Microorganisms which are of major importance for processes such as wastewater treatment, microbial leaching or methane production can be detected and quantified in situ within a complex microbial community. For certain processes, such as nitrification or biological phosphate removal, new microorganisms have become the focus of interest and have led to an improved understanding of these bioremediation techniques. Hybridization techniques have become fast and reliable alternatives to conventional cultivation techniques in the food industry as a control method for starter cultures for fermentation processes or product control. Recent analytical tools such as flow cytometry and digital image processing have improved the efficiency of these techniques. This review is intended to present a summary of methodological aspects of rRNA-based hybridization techniques and their application in biotechnology.  相似文献   

18.
In their natural habitats orangutans and gibbons have to solve spatial problems to find enough food, which is distributed over large areas and available at different times of the year. Therefore both species should evolve spatial memory skills to remember spatial locations and their content. We conducted 2 studies in a 1900-m2 naturalistic outdoor enclosure. In the 1st study, we hid kiwi pieces in 10 different locations and placed kiwi pieces in a visible location. Individuals of both species approached significantly more food locations in the test condition than in the control condition in which no food was hidden. In the 2nd study, we hid 2 types of food in 10 different locations so that individuals had to remember which food type was where. We hid bananas on trees (banana condition) and grapes under bamboo shrubs (grape condition). We also placed oranges in full view (control condition) to rule out the possibility that finding food may automatically trigger an indiscriminate search. Individuals approached the banana locations more often in the banana than in the other 2 conditions. Some orangutans, but not the gibbon, also approached the grape locations more often in the grape than in the other 2 conditions. Individuals often returned to locations in which they previously found food and rarely revisited locations in the same session. We detected little influence of the food quantity and no influence of the distance to each location on the subjects' foraging behavior.  相似文献   

19.

Key message

Grain amaranth is an underutilized crop with high nutritional quality from the Americas. Emerging genomic and biotechnological tools are becoming available that allow the integration of novel breeding techniques for rapid improvement of amaranth and other underutilized crops.

Abstract

Out of thousands of edible plants, only three cereals—maize, wheat and rice—are the major food sources for a majority of people worldwide. While these crops provide high amounts of calories, they are low in protein and other essential nutrients. The dependence on only few crops, with often narrow genetic basis, leads to a high vulnerability of modern cropping systems to the predicted climate change and accompanying weather extremes. Broadening our food sources through the integration of so-called orphan crops can help to mitigate the effects of environmental change and improve qualitative food security. Thousands of traditional crops are known, but have received little attention in the last century and breeding efforts were limited. Amaranth is such an underutilized pseudocereal that is of particular interest because of its balanced amino acid and micronutrient profiles. Additionally, the C4 photosynthetic pathway and ability to withstand environmental stress make the crop a suitable choice for future agricultural systems. Despite the potential of amaranth, efforts of genetic improvement lag considerably behind those of major crops. The progress in novel breeding methods and molecular techniques developed in model plants and major crops allow a rapid improvement of underutilized crops. Here, we review the history of amaranth and recent advances in genomic tools and give a concrete perspective how novel breeding techniques can be implemented into breeding programs. Our perspectives are transferable to many underutilized crops. The implementation of these could improve the nutritional quality and climate resilience of future cropping systems.
  相似文献   

20.
Fungal plant parasites represent a growing concern for biodiversity and food security. Most ascomycete species are capable of producing different types of infectious spores both asexually and sexually. Yet the contributions of both types of spores to epidemiological dynamics have still to been fully researched. Here we studied the effect of mate limitation in parasites which perform both sexual and asexual reproduction in the same host. Since mate limitation implies positive density dependence at low population density, we modeled the dynamics of such species with both density-dependent (sexual) and density-independent (asexual) transmission rates. A first simple SIR model incorporating these two types of transmission from the infected compartment, suggested that combining sexual and asexual spore production can generate persistently cyclic epidemics in a significant part of the parameter space. It was then confirmed that cyclic persistence could occur in realistic situations by parameterizing a more detailed model fitting the biology of the Black Sigatoka disease of banana, for which literature data are available. We discuss the implications of these results for research on and management of Sigatoka diseases of banana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号