首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Panda M  Ybarra J  Horowitz PM 《Biochemistry》2002,41(42):12843-12849
We investigated the dissociation of single-ring heptameric GroEL (SR1) by high hydrostatic pressure in the range of 1-2.5 kbar. The kinetics of the dissociation of SR1 in the absence and presence of Mg2+, KCl, and nucleotides were monitored using light scattering. The major aim of this investigation was to understand the role of the double-ring structure of GroEL by comparing its dissociation with the dissociation of the single ring. At all the pressures that were studied, SR1 dissociates much faster than the GroEL 14mer. As observed with the GroEL 14mer, SR1 also showed biphasic kinetics and the dissociated monomers do not reassociate readily back to the oligomer. Unlike the GroEL 14mer, the observed rates for SR1 dissociation are independent of the concentrations of Mg2+ and KCl in the studied range. The effects of nucleotides on the observed rates, in the absence or presence of Mg2+ and KCl, are not very significant. The heterogeneity induced in the GroEL molecule with the double-ring structure by ligands such as Mg2+, KCl, and nucleotides is not observed in the case of SR1. This indicates that the inter-ring negative cooperativity in the double-ring GroEL has a major role in this regard. The results presented in this investigation demonstrate that the presence of a second ring in the GroEL 14mer is important for its stability in an environment where the functional ligands of the chaperonin are available.  相似文献   

2.
We investigated the effects of high hydrostatic pressure in the range of 1--3 kilobars on tetradecameric GroEL, heptameric GroES, and the GroEL-GroES complex. Unlike GroEL monomers formed by urea dissociation, which can be reassembled back to the tetradecamer, the pressure-dissociated monomers do not reassemble readily. This indicates an alteration of their native structures, an example of conformational drift. Pressure versus time profiles and kinetics of the dissociation of both GroEL and GroES at fixed pressures were monitored by light scattering. Unlike GroEL, GroES monomers do reassociate readily. Reaction conditions were varied by adding ATP, Mg(2+), ADP, AMP-PNP, and KCl. At any individual pressure, the dissociation process is governed by both thermodynamics and kinetics. This leads to the decrease in the yield of monomers at lower pressures. In the presence of Mg(2+) and KCl, GroEL is stable up to 3 kilobars. The presence of either ATP or ADP but not AMP-PNP leads to GroEL dissociation at lower pressures. Interestingly, the GroEL-GroES complex is very stable in the range of 1--2.5 kilobars. However, the addition of ADP destabilizes the complex, which dissociates completely at 1.5 kilobars. The results are rationalized in terms of different degrees of cooperativity between individual monomers and heptameric rings in the GroEL tetradecamer. Such allosteric interactions leading to the alteration of quaternary structure of GroEL in the absence of chemical denaturants are important in understanding the mechanism of chaperonin-assisted protein folding by the GroEL-GroES system.  相似文献   

3.
Panda M  Smoot AL  Horowitz PM 《Biochemistry》2001,40(34):10402-10410
The molecular chaperone, GroEL, is completely disassembled into monomers by the addition of 4,4'-dipyridyl disulfide. The dissociation leads to monomers in a kinetically controlled process. The additions of functional ligands of GroEL such as Mg(2+) or adenine nucleotides produced differences in the observed rates, but at the end of the kinetics, the dissociation was complete. In addition to the information obtained from native gels, the fluorescent probe bis-ANS was utilized to follow the monomer formation. The results demonstrate that the formation of monomers was associated with the exposure of hydrophobic surfaces. This assessment was possible without the use of added chaotropes, such as urea, to dissociate GroEL. Dissociation kinetics were also followed by light scattering. The kinetics of dissociation of the 14mer are cooperative with respect to the concentration of 4,4'-DPDS. Thermodynamic parameters for the kinetic process gave a free energy of activation (DeltaG) of 19.3 +/- 1.2 kcal mol(-1), which was decomposed to an enthalpy of activation (DeltaH) of 19.30 +/- 1.2 kcal mol(-1) and an entropy of activation (DeltaS) of -8.2 +/- 3.9 cal mol(-1) K(-1). We conclude that the dissociation of GroEL observed in this investigation is an enthalpy-controlled process.  相似文献   

4.
Inhibition of yeast plasma membrane ATPase by vanadate occurs only if either Mg2+ or MgATP2- is bound to the enzyme. The dissociation constant of the complex of vanadate and inhibitory sites is 0.14-0.20 microM in the presence of optimal concentrations of Mg2+ and of the order of 1 microM if the enzyme is saturated with MgATP2-. The dissociation constants of Mg2+ and MgATP2- for the sites involved are 0.4 and 0.62-0.73 mM, respectively, at pH 7. KCl does not increase the affinity of vanadate to the inhibitory sites as was found with (Na+ + K+)-ATPase. On the other hand, the effect of Mg2+ upon vanadate binding is similar to that upon (Na+ + K+)-ATPase, and the corresponding affinity constants of Mg2+ and vanadate for the two enzymes are of the same order of magnitude.  相似文献   

5.
1. The effect of alkaline earth cations on the dissociation of the extracellular hemoglobin of Lumbricus terrestris and the effect of ionic strength on the dissociation of the hemoglobins of L. terrestris and Tubifex tubifex at concentrations of ca 2.5 mg/ml, over the pH range 9.0-10.5 was investigated using ultracentrifugation to separate the dissociated from the undissociated molecules. 2. Mg(II), Ca(II) and Sr(II) at concentrations of up to 0.2 M, decreased the dissociation of Lumbricus oxyhemoglobin from 70% at pH 9.0 and 100% at pH 9.5 and higher, to 20-30% at 0.05 M. The three cations were equally effective in decreasing the extent of dissociation of L. terrestris oxyhemoglobin over the pH range 9.0-10.5, with a K1/2 of ca 10 mM. 3. The dissociation of L. terrestris oxyhemoglobin over the pH range 9.0-10.5 was decreased only to 50-60% in the presence of up to 0.5 M NaCl or KCl; there was no further decrease in dissociation at concentrations of the two salts up to 1.5 M. 4. The dissociation of T. tubifex oxyhemoglobin over the pH range 9.0-10.0 was decreased from 100% to ca 40-50% in the presence of 0.5 M NaCl or KCl with little or no change at higher concentrations. At pH 10.5 and 11.0 the decrease in dissociation was more gradual, reaching ca 50% at 1.5 M NaCl.  相似文献   

6.
The main function of the chaperone GroEL is to prevent nonspecific association of nonnative protein chains and provide their correct folding. In the present work, the renaturation kinetics of three globular proteins (human alpha-lactalbumin, bovine carbonic anhydrase, and yeast phosphoglycerate kinase) in the presence of different molar excess of GroEL (up to 10-fold) was studied. It was shown that the formation of the native structure during the refolding of these proteins is retarded with an increase in GroEL molar excess due to the interaction of kinetic protein intermediates with the chaperone. Mg(2+)-ATP and Mg(2+)-ADP weaken this interaction and decrease the retarding effect of GroEL on the protein refolding kinetics. The theoretical modeling of protein folding in the presence of GroEL showed that the experimentally observed linear increase in the protein refolding half-time with increasing molar excess of GroEL must occur only when the protein adopts its native structure outside of GroEL (i.e. in the free state), while the refolding of the protein in the complex with GroEL is inhibited. The dissociation constants of GroEL complexed with the kinetic intermediates of the proteins studied were evaluated, and a simple mechanism of the functioning of GroEL as a molecular chaperone was proposed.  相似文献   

7.
The effects of Mg(2+) and K(+) ions on the self-splicing inhibition of the td (thymidylate synthase gene) intron RNA by spectinomycin were investigated. The maximum splicing activity occurred at 20 mM KCl. The K(m) and V(max) values for GTP in the presence of 5 mM Mg(2+) are 2.25 microM and 0.55 min(-1), whereas those for GTP both in the presence of 5 mM Mg(2+) and 5 mM K(+) are 1.23 microM and 0. 46 min(-1), respectively. Spectinomycin at 10 mM concentration inhibited the splicing by about 10%, but at 20 mM concentration, the splicing rate was inhibited by about 63%. The splicing inhibition by the low concentration of spectinomycin was overcome markedly as the concentration of Mg(2+) ion was raised. At 30 mM spectinomycin, however, the splicing inhibition was not significantly affected by increasing the concentration of Mg(2+). A similar activation of the splicing rate was observed as the concentration of K(+) ion was increased. The concentration of K(+) ion required for the normal recovery of the splicing was much higher than that of Mg(2+) ion. Unlike Mg(2+) ion, 30 mM K(+) ion effectively alleviated the splicing inhibition by spectinomycin at its high concentration. The results indicate that K(+) and Mg(2+) ions may show mechanistically different interactions with spectinomycin in the self-splicing reaction of the td intron RNA.  相似文献   

8.
Rueda D  Wick K  McDowell SE  Walter NG 《Biochemistry》2003,42(33):9924-9936
The hammerhead ribozyme is one of the best-studied small RNA enzymes, yet is mechanistically still poorly understood. We measured the Mg(2+) dependencies of folding and catalysis for two distinct hammerhead ribozymes, HHL and HH alpha. HHL has three long helical stems and was previously used to characterize Mg(2+)-induced folding. HH alpha has shorter stems and an A.U tandem next to the cleavage site that increases activity approximately 10-fold at 10 mM Mg(2+). We find that both ribozymes cleave with fast rates (5-10 min(-1), at pH 8 and 25 degrees C) at nonphysiologically high Mg(2+) concentrations, but with distinct Mg(2+) dissociation constants for catalysis: 90 mM for HHL and 10 mM for HH alpha. Using time-resolved fluorescence resonance energy transfer, we measured the stem I-stem II distance distribution as a function of Mg(2+) concentration, in the presence and absence of 100 mM Na(+), at 4 and 25 degrees C. Our data show two structural transitions. The larger transition (with Mg(2+) dissociation constants in the physiological range of approximately 1 mM, below the catalytic dissociation constants) brings stems I and II close together and is hindered by Na(+). The second, globally minor, rearrangement coincides with catalytic activation and is not hindered by Na(+). Additionally, the more active HH alpha exhibits a higher flexibility than HHL under all conditions. Finally, both ribozyme-product complexes have a bimodal stem I-stem II distance distribution, suggesting a fast equilibrium between distinct conformers. We propose that the role of diffusely bound Mg(2+) is to increase the probability of formation of a properly aligned catalytic core, thus compensating for the absence of naturally occurring kissing-loop interactions.  相似文献   

9.
The physiological concentration of free magnesium in Escherichia coli cells is about 1 mM, and there is almost no chloride in the cell. When the aminoacylation of tRNA by tyrosyl-tRNA synthetase was assayed at 1 mM free Mg2+, chloride (and sulphate) ions inhibited the reaction but acetate at the same concentration (< 200 mM) was not inhibitory. When the magnesium concentration was increased to 10 mM there was almost no chloride inhibition any more. Chloride strengthened the PPi inhibition, the Ki(app)(PPi) values at 1 mM free Mg2+ were 140, 120, and 56 microM at 0, 50 and 150 mM KCl, respectively. Chloride weakened the AMP inhibition, the corresponding values for Ki(app)(AMP) were 0.35, 0.5, and 0.9 mM. The value of Km(app)(tRNA(Tyr)) was clearly increased by chloride, being 22, 37, 93, and 240 nM at 0, 50, 100, and 150 mM KCl, respectively. Best-fit analyses of the PPi inhibition, AMP inhibition and Km(app)(tRNA) assays were accomplished using total rate equations. The analysis showed that the only kinetic events which are obligatory to explain the chloride effects are a weakened binding of Mg2+ to the tRNA before the transfer reaction and a weakened binding of Mg2+ to the Tyr-tRNA-enzyme complex after the transfer reaction. The dissociation constants for the former were 0.11, 0.3, and 2.8 mM and for the latter 0.6, 2.5, and 13 mM at 0, 50 and 150 mM KCl, respectively. Mg2+ is required for the reactive conformation of tRNA in the transfer reaction but chloride weakens its formation. After the transfer reaction the dissociation of Mg2+ from the aa-tRNA-enzyme complex enhances the dissociation of the aa-tRNA from the enzyme. The kinetics and the chloride effect were similar in the tyrosyl-tRNA synthetases from both Bacillus stearothermophilus and E. coli.  相似文献   

10.
The influence of ionic strength on the isometric tension, stiffness, shortening velocity and ATPase activity of glycerol-treated rabbit psoas muscle fiber in the presence and the absence of Ca2+ has been studied. When the ionic strength of an activating solution (containing Mg2+-ATP and Ca2+) was decreased by varying the KCl concentration from 120 to 5 mM at 20 degrees C, the isometric tension and stiffness increased by 30% and 50%, respectively. The ATPase activity increased 3-fold, while the shortening velocity decreased to one-fourth. At 6 degrees C, similar results were obtained. These results suggest that at low ionic strengths ATP is hydrolyzed predominantly without dissociation of myosin cross-bridges from F-actin. In the absence of Ca2+, with decreasing KCl concentration the isometric tension and stiffness developed remarkably at 20 degrees C. However, the ATPase activity and shortening velocity were very low. At low ionic strength, even in the absence of Ca2+ myosin heads are bound to thin filaments. The development of the tension and stiffness were greatly reduced at 6 degrees C or at physiological ionic strength.  相似文献   

11.
The binding processes of GroEL with apo cytochrome c (apo-cyt c) and disulfide-reduced apo alpha-lactalbumin (rLA) in homogeneous solution at low concentration were analyzed by fluorescence correlation spectroscopy (FCS) with extremely high sensitivity. Although apo-cyt c, a positively charged substrate, was tightly bound to GroEL in both the absence and the presence of 200 mM KCl, the strength of the binding was changed with varying salt concentration. Results from experiments when two different salts (KCl or MgCl(2)) were titrated into a sample solution containing GroEL and apo-cyt c clearly showed that the binding strength decreased with increasing salt concentration. On the other hand, the binding affinity of GroEL for rLA, a negatively charged substrate, increased by adding of 200 mM KCl. These results indicate that electrostatic interactions substantially contribute to the binding interactions by manipulating the binding affinity of charged substrates.  相似文献   

12.
1. Ribosomes and the tetramer arrangement peculiar to the tissues of chick embryos exposed to low temperatures were separated by sucrose-density-gradient centrifugation, and the effects of variation of the concentrations of Mg(2+), Ca(2+) and K(+) studied. 2. Lowering of the Mg(2+) concentration from standard buffer conditions caused a reversible dissociation of tetramers into monomers and of these into subunits. 3. Ca(2+) replaced Mg(2+) in causing the re-formation of tetramers and monomers from subunits after dissociation in low Mg(2+) concentrations. 4. Ca(2+) also caused an almost complete conversion of monomers into dimers in the presence of Mg(2+). 5. The effect of Ca(2+) on the formation of dimers was abolished by pretreatment of the ribosomes with ribonuclease, but the re-formation of tetramers was unaffected. 6. Increase of the K(+) concentration from that of the standard buffer caused dissociation of monomers and dimers into subunits. 7. Raised K(+) concentration also caused a stepwise alteration of the tetramer from a particle with a sedimentation coefficient of 197S, which constitutes the bulk of the tetramer at low K(+) concentrations, first to a 184S peak and finally to material with a sedimentation coefficient of about 155S. 8. The implications of these results on hypotheses of the arrangement of the individual monomers in the tetramer are discussed and a new model for the structure is proposed.  相似文献   

13.
The actin-activated Mg2+-ATPase activity of smooth muscle myosin was measured in 85 mM KCl, 6 mM MgCl2 in the absence of tropomyosin. The activity was dependent on myosin concentration. Vmax increased as myosin concentration was increased, while the Ka (the apparent dissociation constant for actin) remained the same. The extent of filament formation was also correlated with myosin concentration and most of the myosin monomers existed in 10S conformation. These results suggest that myosin concentration influences the actin-activated Mg2+-ATPase activity by changing the 10S-6S-filaments equilibrium.  相似文献   

14.
The action of sodium nitroprusside, nitrite-anions and hydrogen peroxide on Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (Ca(2+)-independent) enzymatic activity in myometrium sarcolemma fraction is investigated. It is established, that 0.1 mM sodium nitroprusside and 10(-8)-10(-5) M nitrite-anions essentially reduce Ca2+, Mg(2+)-ATPase activity whereas Mg(2+)-ATPase proved to be absolutely resistant to them. At rather high concentration of nitrite-anions (0.1 mM) appreciable stimulation of Ca2+, Mg(2+)-ATPase was observed. Hydrogen peroxide (10(-8)-10(-4)), depending on the concentration suppressed both enzymes activity. However, Ca2+, Mg(2+)-ATPase proved to be more sensitive to the action of H2O2 (seeming K(i) = 0.42 +/- 0.1 microM), than Mg(2+)-ATPase (seeming K(i) = 3.1 +/- 0.9 microM). At presence of 1 mM ditiothreitole (a reducer of SH groups of the membrane surface) action of investigated substances considerably decreased. Reagents on carboxic- (dicyclogexilcarbodiimid) and amino- groups of the membrane (trinitrobenzolsulfonic acid) inhibited both Ca2+, Mg(2+)-ATPase, and Mg(2+)-ATPase activity in membrane fractions. In the presence of noted reagents sodium nitroprusside and nitrite-anions action was not almost shown. Hence, nitrogen oxide, nitrite-anions and hydrogen peroxide suppress Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (only hydrogen peroxide) activity in the plasmatic membrane of myometrium cells, and this action can be connected with direct updating of superficial chemical groups of the membrane.  相似文献   

15.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

16.
We used actin filament bundles isolated from intestinal brush-border microvilli to nucleate the polymerization of pure muscle actin monomers into filaments. Growth rates were determined by electron microscopy by measuring the change in the length of the filaments as a function of time. The linear dependence of the growth rates on the actin monomer concentration provided the rate constants for monomer association and dissociation at the two ends of the growing filament. The rapidly growing ("barbed") end has higher association and dissociation rate constants than the slowly growing ("pointed") end. The values of these rate constants differ in 20 mM KCl compared with 75 mM KCl, 5 mM MgSO4. 2 microM cytochalasin B blocks growth entirely at the barbed end, apparently by reducing both association and dissociation rate constants to near zero, but inhibits growth at the pointed end to only a small extent.  相似文献   

17.
Rudyak SG  Brenowitz M  Shrader TE 《Biochemistry》2001,40(31):9317-9323
Lon (La) proteases are multimeric enzymes that are activated by ATP and Mg(2+) ions and stimulated by unfolded proteins such as alpha-casein. The peptidase activity of the Lon protease from Mycobacterium smegmatis (Ms-Lon) is dependent upon both its concentration and that of Mg(2+). Addition of alpha-casein partially substitutes for Mg(2+) in activating the enzyme. In chemical dissociation experiments, higher concentrations of urea were required to inhibit Ms-Lon's catalytic activities after an addition of alpha-casein. Analytical ultracentrifugation was used to directly probe the effect of activators of peptidase activity on Ms-Lon self-association. Sedimentation velocity experiments reveal that Ms-Lon monomers are in a reversible equilibrium with oligomeric forms of the protein and that the self-association reaction is facilitated by Mg(2+) ions but not by AMP-PNP or ATP gamma S. NaCl at 100 mM facilitates oligomerization and stimulates peptidase activity at suboptimal concentrations of MgCl(2). Sedimentation equilibrium analysis shows that Ms-Lon associates to a hexamer at 50 mM Tris and 10 mM MgCl(2), at pH 8.0 and 20 degrees C, and that the assembly reaction is Mg(2+) dependent; the mole fraction of hexamer decreases with decreasing MgCl(2) to undetectable levels in 10 mM EDTA. The analysis of experiments conducted at a series of initial protein and MgCl(2) concentrations yields two assembly models: dimer <--> tetramer <--> hexamer and timer <--> hexamer, equally consistent with the data. Limited trypsin digestion, CD, and tryptophan fluorescence suggest only minor changes in secondary and tertiary structure upon Mg(2+)-linked oligomerization. These results show that activation of Ms-Lon peptidase activity requires oligomerization and that Ms-Lon self-association reaction is facilitated by its activator, Mg(2+), and stimulator, unfolded protein.  相似文献   

18.
Purified glutamine synthetase from the cyanobacterium Anabaena cylindrica required a divalent cation for activity. Maximum biosynthetic activity required Mg2+ (25 mM when supplied alone). Co2+ and Mn2+ each supported up to 20% of this activity; 12 other cations tested were ineffective. At 2.5 - 10 mM Mg2+, 0.1 mM Co2+ or ethylene glycol-bis-(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA) stimulated GS activity to maximum rates; other divalent cations (particularly Mn2+) inhibited Mg2+-dependent activity. At 5 mM Mg2+ the Kappm for NH+4 (0.05 mM) was 20-fold lower than at 25 mM Mg2+; added Co2+ did not markedly alter this low Km for NH+4; this could be physiologically important.  相似文献   

19.
A technique that permitted the reversible dissociation of rat liver ribosomes was used to study the difference in protein-synthetic activity between liver ribosomes of normal and hypophysectomized rats. Ribosomal subunits of sedimentation coefficients 38S and 58S were produced from ferritin-free ribosomes by treatment with 0.8m-KCl at 30 degrees C. These recombined to give 76S monomers, which were as active as untreated ribosomes in incorporating phenylalanine in the presence of poly(U). Subunits from normal and hypophysectomized rats were recombined in all possible combinations and the ability of the hybrid ribosomes to catalyse polyphenylalanine synthesis was measured. The results show that the defect in ribosomes of hypophysectomized rats lies only in the small ribosomal subunit. The 40S but not the 60S subunit of rat liver ribosomes bound poly(U). The only requirement for the reaction was Mg(2+), the optimum concentration of which was 5mm. No apparent difference was seen between the poly(U)-binding abilities of 40S ribosomal subunits from normal or hypophysectomized rats. Phenylalanyl-tRNA was bound by 40S ribosomal subunits in the presence of poly(U) by either enzymic or non-enzymic reactions. Non-enzymic binding required a Mg(2+) concentration in excess of 5mm and increased linearly with increasing Mg(2+) concentrations up to 20mm. At a Mg(2+) concentration of 5mm, GTP and either a 40-70%-saturated-(NH(4))(2)SO(4) fraction of pH5.2 supernatant or partially purified aminotransferase I was necessary for binding of aminoacyl-tRNA. Hypophysectomy of rats resulted in a decreased binding of aminoacyl-tRNA by 40S ribosomal subunits.  相似文献   

20.
Ca2+ binding to rabbit skeletal calsequestrin was studied at physiological ionic strength by equilibrium flow dialysis, Hummel-Dryer gel filtration and microcalorimetry. 31 Ca(2+)-binding sites with a mean dissociation constant (KD) of 0.79 mM were titrated in the absence, and 23 sites with a KD of 0.88 mM in the presence of 3 mM Mg2+. No cooperativity was observed. For Mg2+ binding, the combination of gel filtration and microcalorimetry yielded a stoichiometry of 26 Mg2+/protein with a KD of 2mM. 1 mM Ca2+ decreased the stoichiometry to 20 Mg2+/protein. Binding of Ca2+ in the absence and presence of 3 mM Mg2+ was accompanied by a release of 2.0 and 2.7 H+/protein, respectively. Mg2+ binding did not lead to a significant proton release suggesting a qualitative difference in the Ca(2+)- and Mg(2+)-binding sites. After correction for proton release, the enthalpy change for Ca2+ binding was very low (-1.5 kJ/protein in the absence, and -15 kJ/protein in the presence of 3 mM Mg2+). The entropy change (+59 J/K.site in the absence and +56 J/K.site in the presence of Mg2+) was therefore virtually the sole driving force for Ca2+ binding. Mg2+ binding is slightly more exothermic (-12.6 kJ/protein), but as for Ca2+, the entropy change (+50 J/K.site) constituted the major driving force of the reaction. A fluorimetric study indicates that the conformation of tryptophan in Mg(2+)-saturated calsequestrin was clearly different from that in the Ca(2+)-saturated protein, but that the (Ca2+ + Mg2+)-saturated protein was not distinct from the Ca(2+)-saturated protein. Thus, in addition to the thermodynamic characterization of the Ca2+/calsequestrin interaction, our data indicate that Ca2+ and Mg2+ do not bind to the same sites on calsequestrin. The data also predict considerable proton fluxes upon Ca(2+)-Mg2+ exchange in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号