首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
We investigated the expression and cell localization of NOTCH1, NOTCH4, and the delta-like ligand DLL4 in corpus luteum (CL) from pregnant rats during prostaglandin F2alpha (PGF2alpha)-induced luteolysis. We also examined serum progesterone (P(4)) and CL proteins related to apoptosis after local administration of the notch inhibitor N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT). Specific staining for NOTCH1 and NOTCH4 receptors was detected predominantly in large and small luteal cells. Furthermore, in line with the fact that the notch intracellular domain is translocated to the nucleus, where it regulates gene expression, staining was evident in the nuclei of luteal cells. In addition, we detected diffuse cytoplasmic immunostaining for DLL4 in small and large luteal cells, in accordance with the fact that DLL4 undergoes proteolytic degradation after receptor binding. The mRNA expression of Notch1, Notch4, and Dll4 in CL isolated on Day 19 of pregnancy decreased significantly after administration of PGF2alpha. Consistent with the mRNA results, administration of PGF2alpha to pregnant rats on Day 19 of pregnancy decreased the protein fragment corresponding to the cleaved forms of NOTCH1/4 CL receptors. In contrast, no significant changes were detected in protein levels for the ligand DLL4. The local intrabursal administration of DAPT decreased serum P(4) levels and increased luteal levels of active caspase 3 and the BAX:BCL2 ratio 24 h after the treatment. These results support a luteotropic role for notch signaling to promote luteal cell viability and steroidogenesis, and they suggest that the luteolytic hormone PGF2alpha may act in part by reducing the expression of some notch system members.  相似文献   

3.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-I (IGF-I) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

4.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-1 (IGF-1) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

5.
Since the regression of the corpus luteum (CL) occurs via a tightly controlled apoptotic process, studies were designed to determine if local administration of the antiapoptotic agent sphingosine 1-phosphate (S1P) effectively blocks the luteolytic action of prostaglandin F-2alpha (PGF-2α). On day 19 of pregnancy, 2 hr before systemic PGF-2α administration, rats were injected intrabursa with either S1P or vehicle (control). The activity of four caspases, which contribute to the initial (caspase-2, -8, and -9) and final (caspase-3) events in apoptosis was measured in pooled CL from four individual ovaries at 0 and 4 hr after PGF-2α injection. The expression of the phosphorylated form of AKT (pAKT) and tumor necrosis factor-alpha (TNF-α) was analyzed by ELISA. In addition, cell death was evaluated by electronic microscopy (EM) in CL 4 and 36 hr after PGF-2α injection. The activity of caspase-2, -3, and -8 was significantly greater by 4 hr after PGF-2α, but not caspase-9 activity. In contrast, expression of pAKT and TNF-α decreased significantly. Administration of S1P suppressed (P < 0.05) these effects, decreasing caspase activities and increasing pAKT and TNF-α expression. The administration of S1P also significantly decreased the percentage of luteal apoptotic cells induced by PGF-2α. PGF-2α treatment increased the prevalence of luteal cells with advanced signs of apoptosis (i.e., multiple nuclear fragments, chromatin condensation, or apoptotic bodies). S1P treatment suppressed these changes and increased the blood vessel density. These results suggest that S1P blocks the luteolytic effect of the PGF-2α by decreasing caspase-2, -3, and -8 activities and increasing AKT phosphorylation and TNF-α expression. Mol. Reprod. Dev. 76: 1153–1164, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

6.
This study examines differences in intracellular responses to cloprostenol, a prostaglandin (PG)F(2alpha) analog, in porcine corpora lutea (CL) before (Day 9 of estrous cycle) and after (Day 17 of pseudopregnancy) acquisition of luteolytic capacity. Pigs on Day 9 or Day 17 were treated with saline or 500 microgram cloprostenol, and CL were collected 10 h (experiment I) or 0.5 h (experiment III) after treatment. Some CL were cut into small pieces and cultured to measure progesterone and PGF(2alpha) secretion. In experiment I, progesterone remained high and PGF(2alpha) low in luteal incubations from either Day 9 or Day 17 saline-treated pigs. Cloprostenol increased PGF(2alpha) production 465% and decreased progesterone production 87% only from Day 17 luteal tissue. Cloprostenol induced prostaglandin G/H synthase (PGHS)-2 mRNA (0.5 h) and protein (10 h) in both groups. In cell culture, cloprostenol or phorbol 12, 13-didecanoate (PDD) (protein kinase C activator), induced PGHS-2 mRNA in luteal cells from both groups. However, acute cloprostenol treatment (10 min) decreased progesterone production and increased PGF(2alpha) production only from Day 17 luteal cells. Thus, PGF(2alpha) production is induced by cloprostenol in porcine CL with luteolytic capacity (Day 17) but not in CL without luteolytic capacity (Day 9). However, this change in PGF(2alpha) production is not explained by a difference in induction of PGHS-2 mRNA or protein.  相似文献   

7.
Prostaglandin F(2alpha) (PGF(2alpha)) acting via a G protein-coupled receptor has been shown to induce apoptosis in the corpus luteum of many species. Studies were carried out to characterize changes in the apoptotic signaling cascade(s) culminating in luteal tissue apoptosis during PGF(2alpha)-induced luteolysis in the bovine species in which initiation of apoptosis was demonstrable at 18 h after exogenous PGF(2alpha) treatment. An analysis of intrinsic arm of apoptotic signaling cascade elements revealed that PGF(2alpha) injection triggered increased ratio of Bax to Bcl-2 in the luteal tissue as early as 4 h posttreatment that remained elevated until 18 h. This increase was associated with the elevation in the active caspase-9 and -3 protein levels and activity (p < 0.05) at 4-12 h, but a spurt in the activity was seen only at 18 h posttreatment that could not be accounted for by the changes in the Bax/Bcl-2 ratio or changes in translocation of Bax to mitochondria. Examination of luteal tissue for FasL/Fas death receptor cascade revealed increased expression of FasL and Fas at 18 h accompanied by a significant (p < 0.05) induction in the caspase-8 activity and truncated Bid levels. Furthermore, intrabursal administration of specific caspase inhibitors, downstream to the extrinsic and intrinsic apoptotic signaling cascades, in a pseudopregnant rat model revealed a greater importance of extrinsic apoptotic signaling cascade in mediating luteal tissue apoptosis during PGF(2alpha) treatment. The DNase responsible for PGF(2alpha)-induced apoptotic DNA fragmentation was found to be Ca(2+)/Mg(2+)-dependent, temperature-sensitive DNase, and optimally active at neutral pH conditions. This putative DNase was inhibited by the recombinant inhibitor of caspase-activated DNase, and immunodepletion of caspase-activated DNase from luteal lysates abolished the observed DNA fragmentation activity. Together, these data demonstrate for the first time temporal and spatial changes in the apoptotic signaling cascades during PGF(2alpha)-in-duced apoptosis in the corpus luteum.  相似文献   

8.
9.
The first postpartum ovulation after early weaning of calves (30 35 days of age) from cows is normally followed by a short luteal phase (6 10 days) unless the animals are pretreated with a progestogen (e.g. norgestomet). Reduced luteal lifespan in cattle is reportedly due to the premature release of a luteolysin (presumably prostaglandin F2 alpha [PGF2 alpha]). Therefore, the objective was to determine if oxytocin-induced release of PGF2 alpha (measured by the stable PGF2 alpha metabolite, 15-keto-13,14-dihydro PGF2 alpha [PGFM]) was greater for cows having a short compared to a normal luteal phase on Day 5 following the first postpartum estrus (Day 0). Thirty postpartum beef cows were randomly assigned into three groups (n = 10 per group) expected to have short (Short d 5) or normal (Norgestomet d 5 and Norgestomet d 16) luteal phases. Cows in Norgestomet d 5 and d 16 groups received Norgestomet (progestogen) implants for 9 days beginning 21 23 days postpartum. On Day 5 (Short d 5 and Norgestomet d 5) or Day 16 (Norgestomet d 16) following first postpartum estrus, each animal was injected (i.v.) with 100 IU oxytocin. In addition, cows in the Short d 5 group were subdivided into two groups following second estrus (normal luteal phase, n = 5 per group) to receive 100 IU oxytocin on Day 5 (Normal d 5) or 16 (Normal d 16), respectively. Estrous cycle length (means +/- SE) for cows in the Short d 5 group (8.7 +/- 0.4 days) was shorter (p less than 0.01) than for cows in all other groups (21.1 +/- 0.3 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Production of prostaglandins (PGs) and expression of their receptors have been demonstrated in bovine corpus luteum (CL). The aim of the present study was to determine whether PGE2 and PGF2alpha have roles in bovine luteal steroidogenic cell (LSC) apoptosis. Cultured bovine LSCs obtained at the midluteal stage (Days 8-12 of the cycle) were treated for 24 h with PGE2 (0.001-1 microM) and PGF2alpha (0.001-1 microM). Prostaglandin E2 (1 microM) and PGF2alpha (1 microM) significantly stimulated progesterone (P4) production and reduced the levels of cell death in the cells cultured with or without tumor necrosis factor alpha (TNF)/interferon gamma (IFNG), in the presence and absence of FAS ligand (P < 0.05). Furthermore, DNA fragmentation induced by TNF/IFNG was observed to be suppressed by PGE2 and PGF2alpha. Prostaglandin E2 and PGF2alpha also attenuated mRNA expression of caspase 3 and caspase 8, as well as caspase 3 activity (P < 0.05) in TNF/IFNG-treated cells. FAS mRNA and protein expression were decreased only by PGF2alpha (P < 0.05). A specific P4 receptor antagonist (onapristone) attenuated the apoptosis-inhibitory effects of PGE2 and PGF2alpha in the absence of TNF/IFNG (P < 0.05). A PG synthesis inhibitor (indomethacin) reduced cell viability in PGE2- and PGF2alpha-treated cells (P < 0.05). A specific inhibitor of cyclooxygenase (PTGS), PTGS2 (NS-398), also reduced cell viability, whereas an inhibitor of PTGS1 (FR122047) did not affect it. The overall results suggest that PGE2 and PGF2alpha locally play luteoprotective roles in bovine CL by suppressing apoptosis of LSCs.  相似文献   

11.
We recently demonstrated that reperfusion rapidly induces the mitochondrial pathway of apoptosis in chick cardiomyocytes after 1 h of simulated ischemia. Here we tested whether ischemia-reperfusion (I/R)-induced apoptosis could be initiated by caspase-dependent cytochrome c release in this model of cardiomyocyte injury. Fluorometric assays of caspase activity showed little, if any, activation of caspases above baseline levels induced by 1 h of ischemia alone. However, these assays revealed rapid activation of caspase-2, yielding a 2.95 +/- 0.52-fold increase (over ischemia only) within the 1st h of reperfusion, whereas activities of caspases-3, -8, and -9 increased only slightly from their baseline levels. The rapid and prominent activation of caspase-2 suggested that it could be an important initiator caspase in this model, and using specific caspase inhibitors given only at the point of reperfusion, we tested this hypothesis. The caspase-2 inhibitor benzyloxycarbonyl-Val-Asp(Ome)-Val-Ala-Asp(Ome)-CH(2)F was the only caspase inhibitor that significantly inhibited cytochrome c release from mitochondria. This inhibitor also completely blocked activation of caspases-3, -8, and -9. The caspase-3/7 inhibitor transiently and only partially blocked caspase-2 activity and was less effective in blocking the activities of caspases-8 and -9. The caspase-8 inhibitor failed to significantly block caspase-2 or -3, and the caspase-9 inhibitor blocked only caspase-9. Furthermore, the caspase-2 inhibitor protected against I/R-induced cell death, but the caspase-8 inhibitor failed to do so. These data suggest that active caspase-2 initiates cytochrome c release after reperfusion and that it is critical for the I/R-induced apoptosis in this model.  相似文献   

12.
Tumor necrosis factor-alpha (TNFalpha) is a pleiotropic cytokine that has been implicated in apoptosis of many cell systems. However, the signal transduction of TNFalpha during the structural and functional regression of the corpus luteum (CL) is largely unknown. In this study, we investigate the role of TNFalpha in rat CL apoptosis and the involvement of monocyte chemoattractant protein-1 (MCP-1) and the modulating effect of the caspases in this process. An in vivo study of CL during pregnancy and postpartum using immunohistochemistry and Western blot analysis indicated that increases in TNFalpha correspond with luteal apoptosis approaching term (Day 22) and at postpartum (Day 3). CL apoptosis was further investigated using a whole-CL culture model of tropic withdrawal. An increase was observed in both low molecular weight (MW) DNA fragmentation and TUNEL staining from 0 h to 8 h in culture. CL apoptosis in vitro was associated with increased protein expression of both TNFalpha and MCP-1 as measured by immunohistochemistry and Western blot analysis. Using a whole-CL culture model, apoptosis was induced in vitro by TNFalpha as demonstrated by a dose-dependent increase in DNA fragmentation. Treatment of luteal cells with TNFalpha and both specific caspase inhibitors (Z-DEVD-FMK, Z-VEID-FMK, Z-IETD-FMK) or a general caspase inhibitor (Boc-D-FMK) prevented the effect of TNFalpha. CL regression involves the apoptotic deletion of luteal cells; the results of this study suggest that TNFalpha is possibly involved in this process. The observed increases in MCP-1 expression suggest the coordination of TNFalpha expression with the infiltration and activation of macrophages. Furthermore, the results demonstrate the importance of the caspases in the TNFalpha signal transduction pathway and suggest a hierarchy within the caspase family.  相似文献   

13.
Apoptosis contributes to luteal regression in many species. In the postpartum rat, there are two different types of corpora lutea (CL) in the ovary: CL of pregnancy (CLP) and newly formed CL (NCL). To investigate the regulation of apoptosis in the two different types of CL during luteal regression, apoptosis and caspase-3 activity were examined in the CL obtained on Days 7, 15, and 21 of pregnancy and Days 0, 1, 3, 5, 7, and 9 postpartum. Furthermore, the effect of lactation on apoptosis in the CL was examined in two groups of postpartum rats: lactating rats that nurse more than 10 pups, and nonlactating rats that nurse no pups. Apoptotic cells were detected after Day 21 of pregnancy. In the CLP, remarkable increases in the number of apoptotic cells on Days 5 and 9 postpartum were observed in nonlactating rats (P < 0.01), but not in lactating rats. Changes in caspase-3 activity in the CLP were not consistent with those in number of apoptotic cells. In the NCL, an increase in apoptosis was found only on Day 5 postpartum in nonlactating rats (P < 0.01), but not in lactating rats. Changes in caspase-3 activity in the NCL were consistent with those in number of apoptotic cells. In conclusion, apoptosis is, at least in part, involved in luteal regression after parturition, and lactation appears to inhibit apoptosis. This study also suggests the presence of a caspase-3-independent mechanism for apoptosis in CLP regression in the rat.  相似文献   

14.
In the intrinsic apoptosis pathway, mitochondrial disruption leads to the release of multiple apoptosis signaling molecules, triggering both caspase-dependent and -independent cell death. The release of cytochrome c induces the formation of the apoptosome, resulting in caspase-9 activation. Multiple caspases are activated downstream of caspase-9, however, the precise order of caspase activation downstream of caspase-9 in intact cells has not been completely resolved. To characterize the caspase-9 signaling cascade in intact cells, we employed chemically induced dimerization to activate caspase-9 specifically. Dimerization of caspase-9 led to rapid activation of effector caspases, including caspases-3, -6 and -7, as well as initiator caspases, including caspases-2, -8 and -10, in H9 and Jurkat cells. Knockdown of caspase-3 suppressed caspase-9-induced processing of the other caspases downstream of caspase-9. Silencing of caspase-6 partially inhibited caspase-9-mediated processing of caspases-2, -3 and -10, while silencing of caspase-7 partially inhibited caspase-9-induced processing of caspase-2, -3, -6 and -10. In contrast, deficiency in caspase-2, -8 or -10 did not significantly affect the caspase-9-induced caspase cascade. Our data provide novel insights into the ordering of a caspase signaling network downstream of caspase-9 in intact cells during apoptosis.  相似文献   

15.
The ability of de novo biosynthesis of prostaglandins (PGs) in individual whole corpora lutea (CL) obtained from sterile-mated adult pseudopregnant rats on different days of the luteal phase and the post-luteolytic period was evaluated. Production of PGs, progesterone and 20 alpha-dihydroprogesterone were determined after in vitro incubation of CL extirpated from Day 2 to Day 19 after mating. A time-relationship with increased accumulation of PGs in the medium was demonstrated from 18 s to 5 h, with large increments during the first 30 min. Basal accumulation of PGs in the incubation medium was highest for 6-keto-PGF1 alpha (the stable metabolite of prostacyclin) greater than PGE2 greater than PGF2 alpha greater than thromboxane B2 (TXB2) and basal accumulation of PGF2 alpha and PGE2 measured in the medium was maximal on Day 10-11 of pseudopregnancy, concomitantly with a decline in secretion of progesterone. Addition of arachidonic acid (AA) dose-dependently increased synthesis of PGs, with absolute amounts of PGE2 greater than 6-keto-PGF1 alpha greater than PGF2 alpha greater than TXB2 and addition of 14 microM indomethacin markedly inhibited accumulation of all PGs measured. Luteinizing hormone (LH, 10 micrograms/ml) stimulated progesterone secretion on all days during pseudopregnancy, but not on the post-luteolytic Day 19. LH increased PGF2 alpha, PGE2 and 6-keto-PGF1 alpha secretion on Day 13 of pseudopregnancy by 76%, 91% and 28%, respectively, but not on the other days tested. Furthermore, stimulation of PG-synthesis by addition of AA abrogated the LH-induced progesterone accumulation markedly, but only on Day 13 of pseudopregnancy. Epinephrine (5 micrograms/ml) increased production of progesterone and also PGs, but only on Day 2 of pseudopregnancy, whereas oxytocin (100 mIU/ml) was found to be without effect on progesterone as well as PG secretion on all days tested. The results of the present study demonstrates the independent ability of the rat CL to synthesize PGG/PGH2-derived prostaglandins, including the putative luteolysin PGF2 alpha. Secondly, we demonstrate that LH and AA-induced increases in PGF2 alpha and PGE2 production during the luteolytic period, may be an autocrine or paracrine mechanism involved in luteolysis.  相似文献   

16.
Change in morphology of the corpus luteum (CL) and patterns of progesterone and estradiol secretion after treatment with melengestrol acetate (MGA) were monitored in postpartum beef cows. Twenty Angus cows were randomly assigned to MGA or MGA + prostaglandin F(2alpha) (PGF) treatments. All cows were fed 0.5 mg of MGA per cow per day for 14 d. The MGA-treated cows (n = 10) were allowed to return to estrus spontaneously at the second estrus after withdrawal of MGA from the feed. The MGA + PGF-treated cows (n = 10) received an injection containing 25 mg of PGF(2alpha) 17 d after the last feeding of MGA. Cycle 1 was defined as the first luteal phase after MGA feeding and Cycle 2 represented the subsequent cycle or luteal phase after PGF. Blood sampling and transrectal ultrasonography of the ovaries was done daily through the completion of 2 estrous cycles upon removal of MGA from the feed. Blood samples were analyzed for plasma progesterone and estradiol concentrations. Area of CL and fluid-filled cavities within each CL were determined by ultrasonography. Concentrations of progesterone and area of CL were similar between cycles and treatments. Estradiol concentrations were higher (P < 0.05) in Cycle 2 than in Cycle 1. Fluid-filled cavities were larger (P < 0.001) in Cycle 1 than in Cycle 2 for both mid-luteal (Days 5 to 9) and late-luteal (Days 10 to 14) phases. Multiple CL (2 or more during 1 cycle) were observed in 5 cows. Progesterone concentrations and total area of luteal tissue did not change with respect to treatment or cycle, but CL morphology was altered in the first cycle after MGA treatment. Of the 19 cows that ovulated after withdrawal of MGA, 3 experienced a short luteal phase. These data characterize changes that occur among cows that are fed melengestrol acetate during the postpartum period and enhance observations from prior studies regarding MGA use.  相似文献   

17.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P > or = 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P < or = 0.05) by LH or PGE2. Secretion of progesterone in vitro by CL slices from day-90 pregnant ewes was not affected by LH (P > or = 0.05) while PGE2 increased (P < or = 0.05) secretion of progesterone. Day 8 ovine CL of the estrous cycle did not secrete (P > or = 0.05) detectable quantities of PGF2alpha or PGE while day-90 ovine CL of pregnancy secreted PGE (P < or = 0.05) but not PGF2alpha. Secretion of progesterone and PGE in vitro by day-90 CL of pregnancy was decreased (P < or = 0.05) by indomethacin. The addition of PGE2, but not LH, in combination with indomethacin overcame the decreases in progesterone by indomethacin (P < or = 0.05). In experiment 2, secretion of progesterone in vitro by day-11 CL of the estrous cycle was increased at 4-h (P < or = 0.05) in the absence of treatments. Both day-11 CL of the estrous cycle and day-90 CL of pregnancy secreted detectable quantities of PGE and PGF2alpha (P < or = 0.05). In experiment 1, PGF2alpha secretion by day-8 CL of the estrous cycle and day-90 ovine CL of pregnancy was undetectable, but was detectable in experiment 2 by day-90 CL. Day 90 ovine CL of pregnancy also secreted more PGE than day-11 CL of the estrous cycle (P < or = 0.05), whereas day-8 CL of the estrous cycle did not secrete detectable quantities of PGE (P > or = 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF2alpha by day- 11 CL of the estrous cycle or day-90 CL of pregnancy (P > or = 0.05). It is concluded that PGE2, not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF2alpha.  相似文献   

18.
Prostaglandin (PG) F2alpha that is released from the uterus is essential for spontaneous luteolysis in cattle. Although PGF2alpha and its analogues are extensively used to synchronize the estrous cycle by inducing luteolysis, corpora lutea (CL) at the early stage of the estrous cycle are resistant to the luteolytic effect of PGF2alpha. We examined the sensitivity of bovine CL to PGF2alpha treatment in vitro and determined whether the changes in the response of CL to PGF2alpha are dependent on progesterone (P4), oxytocin (OT), and PGs produced locally. Bovine luteal cells from early (Days 4-5 of the estrous cycle) and mid-cycle CL (Days 8-12 of the estrous cycle) were preexposed for 12 h to a P4 antagonist (onapristone: OP; 10(-4) M), an OT antagonist (atosiban: AT; 10(-6) M), or indomethacin (INDO; 10(-4) M) before stimulation with PGF2alpha. Although OP reduced P4 secretion (p < 0.001) only in early CL, it reduced OT secretion in the cells of both phases examined (p < 0.001). OP also reduced PGF2alpha and PGE2 secretion (p < 0.01) from early CL. However, it stimulated PGF2alpha secretion in mid-cycle luteal cells (p < 0.001). AT reduced P4 secretion in early and mid-cycle CL (p < 0.05). Moreover, PGF2alpha secretion was inhibited (p < 0.05) by AT in early CL. The OT secretion and the intracellular level of free Ca2+ ([Ca2+]i) were measured as indicators of CL sensitivity to PGF2alpha. PGF2alpha had no influence on OT secretion, although [Ca2+]i increased (p < 0.05) in the early CL. However, the effect of PGF2alpha was augmented (p < 0.01) in cells after pretreatment with OP, AT, and INDO in comparison with the controls. In mid-cycle luteal cells, PGF2alpha induced 2-fold increases in OT secretion and [Ca2+]i. However, in contrast to results in early CL, these increases were magnified only by preexposure of the cells to AT (p < 0.05). These results indicate that luteal P4, OT, and PGs are components of an autocrine/paracrine positive feedback cascade in bovine early to mid-cycle CL and may be responsible for the resistance of the early bovine CL to the exogenous PGF2alpha action.  相似文献   

19.
Ginther OJ 《Theriogenology》2012,77(6):1042-1049
Recent findings on the luteolytic process in mares are reviewed and differences from other farm species are noted. It is well known that the luteolysin, PGF2α (PGF), is secreted from the endometrium in the absence of pregnancy in farm animal species. But PGF is a potent chemical and safeguards have evolved so that only the corpus luteum (CL) is affected. The safeguards include a short PGF half-life and secretion in two or three pulses per day. In mares, endogenous PGF travels from the uterus to the CL through the systemic circulation, but the luteal-cell membranes are highly efficient in capturing the PGF molecules. In ruminants, luteal affinity is lower, but an efficient pathway has evolved for local delivery of PGF from a uterine horn to the adjacent ovary. The beginning of transition from luteal control is manifested within 1 h in mares and heifers, as indicated by a dynamic change in systemic progesterone concentrations. In mares, the transition into luteolysis begins during a relatively small transitional pulse of PGFM (a PGF metabolite) and oxytocin increases with the PGFM pulse. During luteolysis, estradiol increases in stepwise fashion within the hours of each PGFM pulse, with a plateau between pulses. Progesterone decreases linearly within the hours of a PGFM pulse and continuing during the interval between pulses, whereas luteal blood flow decreases during the declining portion of the pulse. In contrast, in heifers, progesterone decreases and increases within the hours of a PGFM pulse, and luteal blood flow increases and decreases concomitantly with the pulse.  相似文献   

20.
The binding of prostaglandin (PG) F-2 alpha to corpora lutea (CL) from pregnant and non-pregnant Pony mares was examined. Studies of the rates of association and dissociation indicated that [3H]PGF was bound specifically and reversibly to a luteal cell membrane preparation (MP) that was isolated by high speed (100,000 g) ultracentrifugation. Various PGs and PG metabolites displaced [3H]PGF from the receptors in the following decreasing order: PGF-2 alpha greater than 13, 14-dihydro-PGF-2 alpha = 13,14-dihydro-15-keto PGF-2 alpha greater than PGD-2 greater than PGF-1 alpha = PGE-2 greater than PGE-2 beta greater than PGE-1. These data implicate the 9 alpha-OH and 5,6 cis double bond as major contributors to PGF receptor recognition. The membrane preparation appeared to contain at least two receptor populations, a high affinity, low capacity and a low affinity, high capacity receptor. The binding of PGF (pg/mg MP protein +/- s.e.m. (n)) to CL of the non-pregnant mare increased from 4.09 +/- 11.6 (4), on Day 4 after ovulation, to reach maximal levels by Day 12, 15.01 +/- 2.5 (4), and declined thereafter. In pregnancy the binding of PGF continued to increase until Day 18, reaching 27.47 +/- 1.7 (3), before it declined on Day 20. The reduction in binding by Day 16 in the non-pregnant mare may reflect the process of luteolysis, while high PGF binding capacity of CL between Days 16 and 18 of pregnancy indicated that luteal maintenance during pregnancy is not associated with a reduction of PGF binding capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号