首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wang GQ  Fu CL  Li JX  Du YZ  Tong J 《生理学报》2006,58(4):359-364
本研究旨在观察和比较视交叉上核(suprachiasmatic nucleus,SCN)与松果体(pineal gland,pG)中Clock基因内源性昼夜转录变化规律以及光照对其的影响。Sprague-Dawley大鼠在持续黑暗(constant darkness,DD)和12h光照:12h黑暗交替(12hourlight:12hour-darkcycle,LD)光制下分别被饲养8周(n=36)和4周n=36)后,在一昼夜内每隔4h采集一组SCN和PG组织(n=6),提取总RNA,用竞争性定量RT-PCR测定不同昼夜时点(circadian times.CT or zeitgeber times.ZT)各样品中Clock基因的mRNA相对表达量,通过余弦法和ClockLab软件获取节律参数,并经振幅检验是否存在昼夜节律性转录变化。结果如下:(1)SCN中Clock基因mRNA的转录在DD光制下呈现昼低夜高节律性振荡变化(P〈0.05),PG中Clock基因的转录也显示相似的内源性节律外观,即峰值出现于主观夜晚(SCN为CTl5,PG为CT18),谷值位于主观白天(SCN为CT3,PG为CT6)(P〉0.05)。(2)LD光制下SCN中Clock基因的转录也具有昼夜节律性振荡(P〈0.05),但与其DD光制下节律外观相比,呈现反时相节律变化(P〈0.05),且其表达的振幅及峰值的mRNA水平均增加(P〈0.05),而PG中Clock基因在LD光制下转录的相应节律参数变化却恰恰相反(P〈0.05)。(3)在LD光制下,光照使PG中Clock基因转录的节律外观反时相于SCN(P〈0.05),即在SCN和PG的峰值分别出现于光照期ZT10和黑暗期ZT17,谷值分别位于黑暗期ZT22和光照期ZT5。结果表明,Clock基因的昼夜转录在SCN和PG中存在同步的内源性节律本质,而光导引在这两个中枢核团调节Clock基因昼夜节律性转录方面有着不同的作用。  相似文献   

3.
Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24‐h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator. The SCN of flounder larvae, unlike that of zebrafish, however, expresses per2 with a rhythmicity of daytime/ON and nighttime/OFF. Here, we examined whether the rhythm of per2 expression in the flounder SCN represents the molecular clock. We also examined early development of the circadian rhythmicity in the SCN and PG. Our three major findings were as follows. First, rhythmic per2 expression in the SCN was maintained under 24 h dark (DD) conditions, indicating that a molecular clock exists in the flounder SCN. Second, onset of circadian rhythmicity in the SCN preceded that in the PG. Third, both 24 h light (LL) and DD conditions deeply affected the development of circadian rhythmicity in the SCN and PG. This is the first report dealing with the early development of circadian rhythmicity in the SCN in fish.  相似文献   

4.
5.
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus contains a major circadian pacemaker that imposes or entrains rhythmicity on other structures by generating a circadian pattern in electrical activity. The identification of "clock genes" within the SCN and the ability to dynamically measure their rhythmicity by using transgenic animals open up new opportunities to study the relationship between molecular rhythmicity and other well-documented rhythms within the SCN. We investigated SCN circadian rhythms in Per1-luc bioluminescence, electrical activity in vitro and in vivo, as well as the behavioral activity of rats exposed to a 6-hr advance in the light-dark cycle followed by constant darkness. The data indicate large and persisting phase advances in Per1-luc bioluminescence rhythmicity, transient phase advances in SCN electrical activity in vitro, and an absence of phase advances in SCN behavioral or electrical activity measured in vivo. Surprisingly, the in vitro phase-advanced electrical rhythm returns to the phase measured in vivo when the SCN remains in situ. Our study indicates that hierarchical levels of organization within the circadian timing system influence SCN output and suggests a strong and unforeseen role of extra-SCN areas in regulating pacemaker function.  相似文献   

6.
Rhythmicity of the rat suprachiasmatic nucleus (SCN), a site of the circadian pacemaker, is affected by daylength; that is, by the photoperiod. Whereas various markers of rhythmicity have been followed, so far there have been no studies on the effect of the photoperiod on the expression of the clock genes in the rat SCN. To fill the gap and to better understand the photoperiodic modulation of the SCN state, rats were maintained either under a long photoperiod with 16 h of light and 8 h of darkness per day (LD16:8) or under a short LD8:16 photoperiod, and daily profiles of Per1, Cry1, Bmal1 and Clock mRNA in darkness were assessed by in situ hybridization method. The photoperiod affected phase, waveform, and amplitude of the rhythmic gene expression as well as phase relationship between their profiles. Under the long period, the interval of elevated Per1 mRNA lasted for a longer and that of elevated Bmal1 mRNA for a shorter time than under the short photoperiod. Under both photoperiods, the morning and the daytime Per1 and Cry1 mRNA rise as well as the morning Bmal1 mRNA decline were closely linked to the morning light onset. Amplitude of Per1, Cry1, and Bmal1 mRNA rhythms was larger under the short than under the long photoperiod. Also, under the short photoperiod, the daily Clock mRNA profile exhibited a significant rhythm. Altogether, the data indicate that the whole complex molecular clockwork in the rat SCN is photoperiod dependent and hence may differ according to the season of the year.  相似文献   

7.
8.
9.
For the first 10 days of pregnancy and the first 12 days of pseudopregnancy, the secretion of prolactin (PRL) from pituitary lactotrophs is rhythmic, with two surges/day. This rhythm can also be triggered by bolus injection of oxytocin (OT). We describe a mathematical model for the initiation, maintenance, and termination of the OT-induced PRL rhythm. In our model, the mechanism for this circadian rhythm is mutual interaction between lactotrophs and neuroendocrine dopamine (DA) neurons. This rhythm is, under normal lighting conditions, entrained by the suprachiasmatic nucleus (SCN) but persists in the absence of input from the SCN. We postulate that OT injection triggers the rhythm by activating a population of bistable hypothalamic neurons that innervate and inhibit DA neurons. The bistable nature of these neurons allows them to act as a memory device, maintaining the rhythm long after OT has been cleared from the blood. The mechanism for this memory device and the arguments supporting it are detailed with computer simulations. Finally, we consider potential targets for a rhythm-terminating factor and make predictions that may be used to determine which mechanism is operational in terminating the OT- or mating-induced PRL rhythm.  相似文献   

10.
11.
The mammalian circadian clock lying in suprachiasmatic nucleus (SCN) is synchronized to about 24 h by the environmental light-dark cycle (LD). The circadian clock exhibits limits of entrainment above and below 24 h, beyond which it will not entrain. Little is known about the mechanisms regulating the limits of entrainment. In this study, we show that wild-type mice entrain to only an LD 24 h cycle, whereas Clock mutant mice can entrain to an LD 24, 28, and 32 h except for LD 20 h and LD 36 h cycle. Under an LD 28 h cycle, Clock mutant mice showed a clear rhythm in Per2 mRNA expression in the SCN and behavior. Light response was also increased. This is the first report to show that the Clock mutation makes it possible to adapt the circadian oscillator to a long period cycle and indicates that the clock gene may have an important role for the limits of entrainment of the SCN to LD cycle.  相似文献   

12.
To establish whether the suprachiasmatic nuclei (SCN) of the Ruin lizard (Podarcis sicula) play a role in entrainment of circadian rhythms to light, we examined the effects of exposure to 24-h light-dark (LD) cycles on the locomotor behavior of lizards with SCN lesions. Lizards became arrhythmic in response to complete SCN lesion under constant temperature and constant darkness (DD), and they remained arrhythmic after exposure to LD cycles. Remnants of SCN tissue in other lesioned lizards were sufficient to warrant entrainment to LD cycles. Hence, the SCN of Ruin lizards are essential both to maintain locomotor rhythmicity and to mediate entrainment of these rhythms to light. We also asked whether light causes expression of Fos-like immunoreactivity (Fos-LI) in the SCN. Under LD cycles, the SCN express a daily rhythm in Fos-LI. Because Fos-LI is undetectable in DD, the rhythm seen in LD cycles is caused by light. We further showed that unilateral SCN lesions in DD induce dramatic period changes. Altogether, the present data support the existence of a strong functional similarity between the SCN of lizards and the SCN of mammals.  相似文献   

13.
Molecular mechanisms of the mammalian circadian clock have been studied primarily by genetic perturbation and behavioral analysis. Here, we used bioluminescence imaging to monitor Per2 gene expression in tissues and cells from clock mutant mice. We discovered that Per1 and Cry1 are required for sustained rhythms in peripheral tissues and cells, and in neurons dissociated from the suprachiasmatic nuclei (SCN). Per2 is also required for sustained rhythms, whereas Cry2 and Per3 deficiencies cause only period length defects. However, oscillator network interactions in the SCN can compensate for Per1 or Cry1 deficiency, preserving sustained rhythmicity in mutant SCN slices and behavior. Thus, behavior does not necessarily reflect cell-autonomous clock phenotypes. Our studies reveal previously unappreciated requirements for Per1, Per2, and Cry1 in sustaining cellular circadian rhythmicity and demonstrate that SCN intercellular coupling is essential not only to synchronize component cellular oscillators but also for robustness against genetic perturbations.  相似文献   

14.
15.
The circadian rhythmicity of hormone secretion, body temperature, and sleep/wakefulness results from an endogenous rhythm of neural activity generated by clock genes in the suprachiasmatic nucleus (SCN). One of these genes, Clock, has been considered essential for the generation of cellular rhythmicity centrally and in the periphery; however, melatonin-proficient Clock(Delta19) + MEL mutant mice retain melatonin rhythmicity, suggesting that their central rhythmicity is intact. Here we show that melatonin production in these mutants was rhythmic in constant darkness and could be entrained by brief single daily light pulses. Under normal light-dark conditions, per2 and prokineticin2 (PK2) mRNA expression was rhythmic in the SCN of Clock(Delta19) + MEL mice. Expression of Bmal1 and npas2 was not altered, whereas per1 expression was arrhythmic. In contrast to the SCN, per1 and per2 expression, as well as Bmal1 expression in liver and skeletal muscle, together with plasma corticosterone, was arrhythmic in Clock(Delta19) + MEL mutant mice in normal light-dark conditions. npas2 mRNA was also arrhythmic in liver but rhythmic in muscle. The Clock(Delta19) mutation does not abolish central rhythmicity and light entrainment, suggesting that a functional Clock homolog, possibly npas2, exists in the SCN. Nevertheless, the SCN of Clock(Delta19) + MEL mutant mice cannot maintain liver and muscle rhythmicity through rhythmic outputs, including melatonin secretion, in the absence of functional Clock expression in the tissues. Therefore, liver and muscle, but not SCN, have an absolute requirement for CLOCK, with as yet unknown Clock-independent factors able to generate the latter.  相似文献   

16.
The proinflammatory cytokine interferon (IFN-gamma) is an immunomodulatory molecule released by immune cells. It was originally described as an antiviral agent but can also affect functions in the nervous system including circadian activity of the principal mammalian circadian pacemaker, the suprachiasmatic nucleus. IFN-gamma and the synergistically acting cytokine tumor necrosis factor-alpha acutely decrease spontaneous excitatory postsynaptic activity and alter spiking activity in tissue preparations of the SCN. Because IFN-gamma can be released chronically during infections, the authors studied the long-term effects of IFN-gamma on SCN neurons by treating dispersed rat SCN cultures with IFN-gamma over a 4-week period. They analyzed the effect of the treatment on the spontaneous spiking pattern and rhythmic expression of the "clock gene," Period 1. They found that cytokine-treated cells exhibited a lower average spiking frequency and displayed a more irregular firing pattern when compared with controls. Furthermore, long-term treatment with IFN-gamma in cultures obtained from a transgenic Per1-luciferase rat significantly reduced the Per1-luc rhythm amplitude in individual SCN neurons. These results show that IFN-gamma can alter the electrical properties and circadian clock gene expression in SCN neurons. The authors hypothesize that IFN-gamma can modulate circadian output, which may be associated with sleep and rhythm disturbances observed in certain infections and in aging.  相似文献   

17.
Light is a prominent stimulus that synchronizes endogenous circadian rhythmicity to environmental light/dark cycles. Nocturnal light elevates mRNA of the Period1 (Per1) gene and induces long term state changes, expressed as phase shifts of circadian rhythms. The cellular mechanism for Per1 elevation and light-induced phase advance in the suprachiasmatic nucleus (SCN), a process initiated primarily by glutamatergic neurotransmission from the retinohypothalamic tract, was examined. Glutamate (GLU)-induced phase advances in the rat SCN were blocked by antisense oligodeoxynucleotide (ODN) against Per1 and Ca(2+)/cAMP response element (CRE)-decoy ODN. CRE-decoy ODN also blocked light-induced phase advances in vivo. Furthermore, the CRE-decoy blocked GLU-induced accumulation of Per1 mRNA. Thus, Ca(2+)/cAMP response element-binding protein (CREB) and Per1 are integral components of the pathway transducing light-stimulated GLU neurotransmission into phase advance of the circadian clock.  相似文献   

18.
19.
In mammals, the principal circadian pacemaker driving daily physiology and behavioral rhythms is located in the suprachiasmatic nucleus (SCN) in the anterior hypothalamus. The neural output of SCN is essential for the circadian regulation of behavioral activity. Although remarkable progress has been made in revealing the molecular basis of circadian rhythm generation within the SCN, the output pathways by which the SCN exert control over circadian rhythms are not well understood. Most SCN efferents target the subparaventricular zone (SPZ), which resides just dorsal to the SCN. This output pathway has been proposed as a major component involved in the outflow for circadian regulation. We have examined the downstream pathway of the central clock by means of multiunit neural activity (MUA) in freely moving mice. SCN neural activity is tightly coupled to environmental photic input and anticorrelated with MUA rhythm in the SPZ. In Clock mutant mice exhibiting attenuated circadian locomotor rhythmicity, MUA rhythmicity in the SCN and SPZ is similarly blunted. These results suggest that the SPZ plays a functional role in relaying circadian and photic signals to centers involved in generating behavioral activity.  相似文献   

20.
In mammals, the circadian oscillator within the suprachiasmatic nuclei (SCN) entrains circadian clocks in numerous peripheral tissues. Central and peripheral clocks share a molecular core clock mechanism governing daily time measurement. In the rat SCN, the molecular clockwork develops gradually during postnatal ontogenesis. The aim of the present work was to elucidate when during ontogenesis the expression of clock genes in the rat liver starts to be rhythmic. Daily profiles of mRNA expression of clock genes Per1, Per2, Cry1, Clock, Rev-Erbalpha, and Bmal1 were analyzed in the liver of fetuses at embryonic day 20 (E20) or pups at postnatal age 2 (P2), P10, P20, P30, and in adults by real-time RT-PCR. At E20, only a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Cry1 but no clear circadian rhythms in expression of other clock genes were detectable. At P2, a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Bmal1 but no rhythms in expression of other genes were detected. At P10, significant rhythms only in Per1 and Rev-Erbalpha expression were present. At P20, clear circadian rhythms in the expression of Per1, Per2, Rev-Erbalpha, and Bmal1, but not yet of Cry1 and Clock, were detected. At P30, all clock genes were expressed rhythmically. The phase of the rhythms shifted between all studied developmental periods until the adult stage was achieved. The data indicate that the development of the molecular clockwork in the rat liver proceeds gradually and is roughly completed by 30 days after birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号