首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FKBP38 is a negative effector of the anti-apoptotic Bcl-2 protein in neuroblastoma cells. The interaction with Bcl-2 and the enzyme activity of FKBP38 depend on prior binding of calmodulin-Ca(2+) (CaM-Ca(2+)) at high Ca(2+) concentrations. The FKBP38 protein structure contains three tetratricopeptide repeat (TPR) motifs corresponding to the Hsp90 interaction sites of other immunophilins. In this study we show that the TPR domain of FKBP38 interacts with the C-terminal domain of Hsp90, but only if the FKBP38-CaM-Ca(2+) complex is preformed. Hence, FKBP38 is the first example of a TPR-containing immunophilin that interacts cofactor-dependently with Hsp90. In the ternary Hsp90-FKBP38-CaM-Ca(2+) complex the active site of FKBP38 is blocked, thus preventing interactions with Bcl-2. The dual control of the active site cleft of FKBP38 by CaM-Ca(2+) and Hsp90 highlights the importance of the enzyme activity of the FKBP38-CaM-Ca(2+) complex in the regulation of programmed cell death.  相似文献   

2.
The FK506-binding protein 38 (FKBP38) affects neuronal apoptosis control by suppressing the anti-apoptotic function of Bcl-2. The direct interaction between FKBP38 and Bcl-2, however, requires a prior activation of FKBP38 by the Ca2+ sensor calmodulin (CaM). Here we demonstrate for the first time that the formation of a complex between FKBP38 and CaM-Ca2+ involves two separate interaction sites, thus revealing a novel scenario of target protein regulation by CaM-Ca2+. The C-terminal FKBP38 residues Ser290-Asn313 bind to the target protein-binding cleft of the Ca2+-coordinated C-terminal CaM domain, thereby enabling the N-terminal CaM domain to interact with the catalytic domain of FKBP38 in a Ca2+-independent manner. Only the latter interaction between the catalytic FKBP38 domain and the N-terminal CaM domain activates FKBP38 and, as a consequence, also regulates Bcl-2.  相似文献   

3.
Hormonal activation of the phosphatidylinositol (PI) signaling system initiates a biochemical pathway that bifurcates to increase cellular levels of diacylglycerol and of inositol trisphosphate/Ca2+. Both Diacylglycerol and Ca2+ are known to activate protein kinase C, a primary mediator of the PI signaling system. We now find that the two limbs of the PI pathway utilize distinct multifunctional protein kinases to mediate their cellular effects. An important consequence of Ca2+ elevated by the PI signaling system, when PC12 cells are treated with bradykinin, is the activation of multifunctional Ca2+/calmodulin-dependent protein kinase. This activation stimulates autophosphorylation of CaM kinase at its regulatory domain and converts it to an active, Ca2(+)-independent species that may be a basis for potentiation of Ca2+ transients.  相似文献   

4.
5.
The cellular processes that regulate Bcl-2 at the posttranslational levels are as important as those that regulate bcl-2 synthesis. Previously we demonstrated that the suppression of FK506-binding protein 38 (FKBP38) contributes to the instability of Bcl-2 or leaves Bcl-2 unprotected from degradation in an unknown mechanism. Here, we studied the underlying molecular mechanism mediating this process. We first showed that Bcl-2 binding-defective mutants of FKBP38 fail to accumulate Bcl-2 protein. We demonstrated that the FKBP38-mediated Bcl-2 stability is specific as the levels of other anti-apoptotic proteins such as Bcl-XL and Mcl-1 remained unaffected. FKBP38 enhanced the Bcl-2 stability under the blockade of de novo protein synthesis, indicating it is posttranslational. We showed that the overexpression of FKBP38 attenuates reduction rate of Bcl-2, thus resulting in an increment of the intracellular Bcl-2 level, contributing to the resistance of apoptotic cell death induced by the treatment of kinetin riboside, an anticancer drug. Caspase inhibitors markedly induced the accumulation of Bcl-2. In caspase-3-activated cells, the knockdown of endogenous FKBP38 by small interfering RNA resulted in Bcl-2 down-regulation as well, which was significantly recovered by the treatment with caspase inhibitors or overexpression of FKBP38. Finally we presented that the Bcl-2 cleavage by caspase-3 is blocked when Bcl-2 binds to FKBP38 through the flexible loop. Taken together, these results suggest that FKBP38 is a key player in regulating the function of Bcl-2 by antagonizing caspase-dependent degradation through the direct interaction with the flexible loop domain of Bcl-2, which contains the caspase cleavage site.  相似文献   

6.
The second messenger molecules cAMP and Ca2+ regulate a large number of eukaryotic cellular events. cAMP acts on protein kinases and Ca2+ works through a ubiquitous calcium-binding protein, calmodulin. The two systems are not independent, however, but interact in several important fashions. These interactions, and, in particular, the modulation of the cAMP signal by two Ca2+/calmodulin-regulated proteins, cyclic nucleotide phosphodiesterase and calcineurin, are described here.  相似文献   

7.
TRPV1 ion channels mediate the response to painful heat, extracellular acidosis, and capsaicin, the pungent extract from plants in the Capsicum family (hot chili peppers) (Szallasi, A., and P.M. Blumberg. 1999. Pharmacol. Rev. 51:159-212; Caterina, M.J., and D. Julius. 2001. Annu. Rev. Neurosci. 24:487-517). The convergence of these stimuli on TRPV1 channels expressed in peripheral sensory nerves underlies the common perceptual experience of pain due to hot temperatures, tissue damage and exposure to capsaicin. TRPV1 channels are nonselective cation channels (Caterina, M.J., M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, and D. Julius. 1997. Nature. 389:816-824). When activated, they produce depolarization through the influx of Na+, but their high Ca2+ permeability is also important for mediating the response to pain. In particular, Ca2+ influx is thought to be required for the desensitization to painful sensations over time (Cholewinski, A., G.M. Burgess, and S. Bevan. 1993. Neuroscience. 55:1015-1023; Koplas, P.A., R.L. Rosenberg, and G.S. Oxford. 1997. J. Neurosci. 17:3525-3537). Here we show that in inside-out excised patches from TRPV1 expressed in Xenopus oocytes and HEK 293 cells, Ca2+/calmodulin decreased the capsaicin-activated current. This inhibition was not mimicked by Mg2+, reflected a decrease in open probability, and was slowly reversible. Furthermore, increasing the calmodulin concentration in our patches by coexpression of wild-type calmodulin with TRPV1 produced inhibition by Ca2+ alone. In contrast, patches excised from cells coexpressing TRPV1 with a mutant calmodulin did not respond to Ca2+. Using an in vitro calmodulin-binding assay, we found that TRPV1 in oocyte lysates bound calmodulin, although in a Ca2+-independent manner. Experiments with GST-fusion proteins corresponding to regions of the channel NH2-terminal domain demonstrated that a stretch of approximately 30 amino acids adjacent to the first ankyrin repeat bound calmodulin in a Ca2+-dependent manner. The physiological response to pain involves an influx of Ca2+ through TRPV1. Our results indicate that this Ca2+ influx may feed back on the channels, inhibiting their gating. This type of feedback inhibition could play a role in the desensitization produced by capsaicin.  相似文献   

8.
In this study, we evaluate the interaction between the postsynaptic scaffolding protein, PSD-95, and calmodulin. Surface plasmon resonance spectroscopy was used to characterize the binding of PSD-95 to calmodulin that had been immobilized on a sensor chip. Additionally, soluble calmodulin was found to inhibit the binding of PSD-95 to immobilized calmodulin. The HOOK region of PSD-95, which is located between the src homology 3 domain and the guanylate kinase-like domain, was determined to be involved in the binding of PSD-95 to calmodulin. We also found that C-terminal peptides from proteins such as CRIPT and the N-methyl-d-aspartate receptor NR2B subunit, which associate with the PDZ domain of PSD-95, enhanced the affinity of PSD-95 for calmodulin. The binding of ligands to the PDZ domain may change the conformation of PSD-95 and affect the interaction between PSD-95 and calmodulin.  相似文献   

9.
Calmodulin-dependent protein kinase IV (CaM-kinase IV) phosphorylated calmodulin (CaM), which is its own activator, in a poly-L-Lys [poly(Lys)]-dependent manner. Although CaM-kinase II weakly phosphorylated CaM under the same conditions, CaM-kinase I, CaM-kinase kinase alpha, and cAMP-dependent protein kinase did not phosphorylate CaM. Polycations such as poly(Lys) were required for the phosphorylation. The optimum concentration of poly(Lys) for the phosphorylation of 1 microM CaM was about 10 microg/ml, but poly(Lys) strongly inhibited CaM-kinase IV activity toward syntide-2 at this concentration, suggesting that the phosphorylation of CaM is not due to simple activation of the catalytic activity. Poly-L-Arg could partially substitute for poly(Lys), but protamine, spermine, and poly-L-Glu/Lys/Tyr (6/3/1) could not. When phosphorylation was carried out in the presence of poly(Lys) having various molecular weights, poly(Lys) with a higher molecular weight resulted in a higher degree of phosphorylation. Binding experiments using fluorescence polarization suggested that poly(Lys) mediates interaction between the CaM-kinase IV/CaM complex and another CaM. The 32P-labeled CaM was digested with BrCN and Achromobacter protease I, and the resulting peptides were purified by reversed-phase HPLC. Automated Edman sequence analysis of the peptides, together with phosphoamino acid analysis, indicated that the major phosphorylation site was Thr44. Activation of CaM-kinase II by the phosphorylated CaM was significantly lower than that by the nonphosphorylated CaM. Thus, CaM-kinase IV activated by binding Ca2+/CaM can bind and phosphorylate another CaM with the aid of poly(Lys), leading to a decrease in the activity of CaM.  相似文献   

10.
11.
CAKbeta (cell adhesion kinase beta)/PYK2 (proline-rich tyrosine kinase 2) is the second protein-tyrosine kinase of the FAK (focal adhesion kinase) subfamily. It is different from FAK in that it is activated following an increase in cytoplasmic free Ca2+. In the present study we have investigated how Ca2+ activates CAKbeta/PYK2. Calmodulin-agarose bound CAKbeta/PYK2, but not FAK, in the presence of CaCl2. An alpha-helix (F2-alpha2) present in the FERM (band four-point-one, ezrin, radixin, moesin homology) F2 subdomain of CAKbeta/PYK2 was the binding site of Ca2+/calmodulin; a mutant of this region, L176A/Q177A (LQ/AA) CAKbeta/PYK2, bound to Ca2+/calmodulin much less than the wild-type. CAKbeta/PYK2 is known to be prominently tyrosine phosphorylated when overexpressed from cDNA. The enhanced tyrosine phosphorylation was inhibited by W7, an inhibitor of calmodulin, and by a cell-permeable Ca2+ chelator and was almost defective in the LQ/AA-mutant CAKbeta/PYK2. CAKbeta/PYK2 formed a homodimer on binding of Ca2+/calmodulin, which might then induce a conformational change of the kinase, resulting in transphosphorylation within the dimer. The dimer was formed at a free-Ca2+ concentration of 8-12 muM and was stable at 500 nM Ca2+, but dissociated to a monomer in a Ca2+-free buffer. The dimer formation of CAKbeta/PYK2 FERM domain was partially defective in the LQ/AA-mutant FERM domain and was blocked by W7 and by a synthetic peptide with amino acids 168-188 of CAKbeta/PYK2, but not by a peptide with its LQ/AA-mutant sequence. It is known that the F2-alpha2 helix is found immediately adjacent to a hydrophobic pocket in the FERM F2 lobe, which locks, in the autoinhibited FAK, the C-lobe of the kinase domain. Our results indicate that Ca2+/calmodulin binding to the FERM F2-alpha2 helix of CAKbeta/PYK2 releases its kinase domain from autoinhibition by forming a dimer.  相似文献   

12.
The Ca2+/calmodulin system in neuronal hyperexcitability   总被引:17,自引:0,他引:17  
Calmodulin (CaM) is a major Ca2+-binding protein in the brain, where it plays an important role in the neuronal response to changes in the intracellular Ca2+ concentration. Calmodulin modulates numerous Ca2+-dependent enzymes and participates in relevant cellular functions. Among the different CaM-binding proteins, the Ca2+/CaM dependent protein kinase II and the phosphatase calcineurin are especially important in the brain because of their abundance and their participation in numerous neuronal functions. Therefore, the role of the Ca2+/CaM signalling system in different neurotoxicological or neuropathological conditions associated to alterations in the intracellular Ca2+ concentration is a subject of interest. We here report different evidences showing the involvement of CaM and the CaM-binding proteins above mentioned in situations of neuronal hyperexcitability induced by convulsant agents. Signal transduction pathways mediated by specific CaM binding proteins warrant future study as potential targets in the development of new drugs to inhibit convulsant responses or to prevent or attenuate the alterations in neuronal function associated to the deleterious increases in the intracellular Ca2+ levels described in different pathological situations.  相似文献   

13.
14.
Ras-related small GTP-binding proteins execute many cellular functions, such as cell growth, differentiation, cytoskeletal reorganization, membrane trafficking, and membrane fusion. RalA belongs to the superfamily of Ras-related small GTP-binding proteins. Synaptic vesicles (SV) contain small GTP-binding proteins, where RalA, Rab3A, and Rab5A are the major GTP-binding proteins. It has been postulated that a cycling of these proteins between membrane-bound and soluble states is required for regulating cellular functions. Calmodulin (CaM) was found to dissociate Rab3A from SV membranes by forming a 1:1 complex with Ca2+/CaM. RalA was also found to be a Ca2+/CaM-binding protein. Therefore, we examined if Ca2+/CaM can also cause the RalA to dissociate from SV membranes. In this study, we identified that Ca2+/CaM dissociates RalA as well as Rab3A from synaptic vesicles.  相似文献   

15.
Calmodulin inhibits inositol 1,4,5-trisphosphate (IP3) binding to the IP3 receptor in both a Ca2+-dependent and a Ca2+-independent way. Because there are no functional data on the modulation of the IP3-induced Ca2+ release by calmodulin at various Ca2+ concentrations, we have studied how cytosolic Ca2+ and Sr2+ interfere with the effects of calmodulin on the IP3-induced Ca2+ release in permeabilized A7r5 cells. We now report that calmodulin inhibited Ca2+ release through the IP3 receptor with an IC50 of 4.6 microM if the cytosolic Ca2+ concentration was 0.3 microM or higher. This inhibition was particularly pronounced at low IP3 concentrations. In contrast, calmodulin did not affect IP3-induced Ca2+ release if the cytosolic Ca2+ concentration was below 0.3 microM. Calmodulin also inhibited Ca2+ release through the IP3 receptor in the presence of at least 10 microM Sr2+. We conclude that cytosolic Ca2+ or Sr2+ are absolutely required for the calmodulin-induced inhibition of the IP3-induced Ca2+ release and that this dependence represents the formation of the Ca2+/calmodulin or Sr2+/calmodulin complex.  相似文献   

16.
Phosphofructokinase (PFK) from sheep heart was shown to be phosphorylated by Ca2+/calmodulin protein kinase (CaM-kinase) as well as by cyclic AMP-dependent protein kinase (PKA). HPLC analysis of phosphorylated PFK indicated that phosphorylation by CaM-kinase occurs at least at two sites that are distinct from those recognized by PKA. Phosphorylation by either CaM-kinase of PKA resulted in an increase in sensitivity to ATP inhibition and a small but consistent decrease in Ki for ATP. Phosphorylation by either protein kinase caused a slight increase in the Km of PFK for fructose-6-P. Protein kinase C failed to phosphorylate PFK. Combinations of PKA, CaM-kinase and protein kinase C did not alter the stoichiometry of phosphorylation and did not change the effect on enzyme activity.  相似文献   

17.
FKBP38 is a member of the family of FK506-binding proteins that acts as an inhibitor of the mammalian target of rapamycin (mTOR). The inhibitory action of FKBP38 is antagonized by Rheb, an oncogenic small GTPase, which interacts with FKBP38 and prevents its association with mTOR. In addition to the role in mTOR regulation, FKBP38 is also involved in binding and recruiting Bcl-2 and Bcl-XL, two anti-apoptotic proteins, to mitochondria. In this study, we investigated the possibility that Rheb controls apoptosis by regulating the interaction of FKBP38 with Bcl-2 and Bcl-XL. We demonstrate in vitro that the interaction of FKBP38 with Bcl-2 is regulated by Rheb in a GTP-dependent manner. In cultured cells, the interaction is controlled by Rheb in response to changes in amino acid and growth factor conditions. Importantly, we found that the Rheb-dependent release of Bcl-XL from FKBP38 facilitates the association of this anti-apoptotic protein with the pro-apoptotic protein Bak. Consequently, when Rheb activity increases, cells become more resistant to apoptotic inducers. Our findings reveal a novel mechanism through which growth factors and amino acids control apoptosis.  相似文献   

18.
Ca(2+) and calmodulin modulate numerous cellular functions, ranging from muscle contraction to the cell cycle. Accumulating evidence indicates that Ca(2+) and calmodulin regulate the MAPK signaling pathway at multiple positions in the cascade, but the molecular mechanism underlying these observations is poorly defined. We previously documented that IQGAP1 is a scaffold in the MAPK cascade. IQGAP1 binds to and regulates the activities of ERK, MEK, and B-Raf. Here we demonstrate that IQGAP1 integrates Ca(2+) and calmodulin with B-Raf signaling. In vitro analysis reveals that Ca(2+) promotes the direct binding of IQGAP1 to B-Raf. This interaction is inhibited by calmodulin in a Ca(2+)-regulated manner. Epidermal growth factor (EGF) is unable to stimulate B-Raf activity in fibroblasts treated with the Ca(2+) ionophore A23187. In contrast, chelation of intracellular free Ca(2+) concentrations ([Ca(2+)](i)) significantly enhances EGF-stimulated B-Raf activity, an effect that is dependent on IQGAP1. Incubation of cells with EGF augments the association of B-Raf with IQGAP1. Moreover, Ca(2+) regulates the association of B-Raf with IQGAP1 in cells. Increasing [Ca(2+)](i) with Ca(2+) ionophores significantly reduces co-immunoprecipitation of B-Raf and IQGAP1, whereas chelation of Ca(2+) enhances the interaction. Consistent with these findings, increasing and decreasing [Ca(2+)](i) increase and decrease, respectively, co-immunoprecipitation of calmodulin with IQGAP1. Collectively, our data identify a previously unrecognized mechanism in which the scaffold protein IQGAP1 couples Ca(2+) and calmodulin signaling to B-Raf function.  相似文献   

19.
We have investigated the interaction of calmodulin (CaM) with Ras-p21 and the significance of this association. All Ras-p21 isoforms tested (H-, K-, and N-Ras) were detected in the particulate fraction of human platelets and MCF-7 cells, a human breast cancer cell line. In MCF-7 cells, H- and N-Ras were also detected in the cytosolic fraction. K-RasB from platelet and MCF-7 cell lysates was found to bind CaM in a Ca2+ -dependent but GTPgammaS-independent manner. The yeast two-hybrid analysis demonstrated that K-RasB binds to CaM in vivo. Incubation of isolated membranes from platelet and MCF-7 cells with CaM caused dissociation of only K-RasB from membranes in a Ca2+ -dependent manner. CaM antagonist, W7, inhibited dissociation of K-RasB. Addition of platelet or MCF-7 cytosol alone to isolated platelet membranes did not cause dissociation of K-RasB and only addition of exogenous CaM caused dissociation. The results suggest a potential role for Ca2+/CaM in the regulation of K-RasB function.  相似文献   

20.
FKBP38 is a regulator of the prosurvival protein Bcl-2, but in the absence of detailed structural insights, the molecular mechanism of the underlying interaction has remained unknown. Here, we report the contact regions between Bcl-2 and the catalytic domain of FKBP38 derived by heteronuclear NMR spectroscopy. The data reveal that a previously identified charge-sensitive loop near the putative active site of FKBP38 is mainly responsible for Bcl-2 binding. The corresponding binding epitope of Bcl-2 could be identified via a peptide library-based membrane assay. Site-directed mutagenesis of the key residues verified the contact sites of this electrostatic protein/protein interaction. The derived structure model of the complex between Bcl-2 and the FKBP38 catalytic domain features both electrostatic and hydrophobic intermolecular contacts and provides a rationale for the regulation of the FKBP38/Bcl-2 interaction by Ca(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号