首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem cells have important clinical and experimental potentials. Trophoblast stem (TS) cells possess the ability to differentiate into trophoblast subtypes in vitro and contribute to the trophoblast lineage in vivo. Suppressor of cytokine signaling 3 (SOCS3) is a negative regulator of cytokine signaling. Targeted disruption of SOCS3 revealed embryonic lethality on E12.5; it was caused by placental defect with enhanced leukemia inhibitory factor receptor signaling. A complementation of the wild-type (WT) placenta by using tetraploid rescue technique showed that the embryonic lethality in SOCS3-deficient embryo was due to the placental defect. Here we demonstrate that TS cells supplementation rescues placental defect in SOCS3-deficient embryos. In the rescued placenta, TS cells were integrated into the placental structure, and a substantial structural improvement was observed in the labyrinthine layer that was disrupted in the SOCS3-deficient placenta. Importantly, by supplying TS cells, living SOCS3-deficient embryos were detected at term. These results indicate a functional contribution of TS cells in the placenta and their potential application.  相似文献   

2.
Keratin 8 protection of placental barrier function   总被引:2,自引:0,他引:2  
The intermediate filament protein keratin 8 (K8) is critical for the development of most mouse embryos beyond midgestation. We find that 68% of K8-/- embryos, in a sensitive genetic background, are rescued from placental bleeding and subsequent death by cellular complementation with wild-type tetraploid extraembryonic cells. This indicates that the primary defect responsible for K8-/- lethality is trophoblast giant cell layer failure. Furthermore, the genetic absence of maternal but not paternal TNF doubles the number of viable K8-/- embryos. Finally, we show that K8-/- concepti are more sensitive to a TNF-dependent epithelial apoptosis induced by the administration of concanavalin A (ConA) to pregnant mothers. The ConA-induced failure of the trophoblast giant cell barrier results in hematoma formation between the trophoblast giant cell layer and the embryonic yolk sac in a phenocopy of dying K8-deficient concepti in a sensitive genetic background. We conclude the lethality of K8-/- embryos is due to a TNF-sensitive failure of trophoblast giant cell barrier function. The keratin-dependent protection of trophoblast giant cells from a maternal TNF-dependent apoptotic challenge may be a key function of simple epithelial keratins.  相似文献   

3.
For implantation and placentation to occur, mouse embryo trophoblast cells must penetrate the uterine stroma to make contact with maternal blood vessels. A major component of the uterine epithelial basement membrane and underlying stromal matrix with which they interact is the extracellular matrix protein laminin. We have identified integrin alpha 7 beta 1 as a major receptor for trophoblast-laminin interactions during implantation and yolk sac placenta formation. It is first expressed by trophectoderm cells of the late blastocyst and by all trophectoderm descendants in the early postimplantation embryo through E8.5, then disappears except in cells at the interface between the allantois and the ectoplacental plate. Integrin alpha 7 expression is a general characteristic of the early differentiation stages of rodent trophoblast, given that two different cultured trophoblast cell lines also express this integrin. Trophoblast cells interact with at least three different laminin isoforms (laminins 1, 2/4, and 10/11) in the blastocyst and in the uterus at the time of implantation. Outgrowth assays using function-blocking antibodies show that alpha 7 beta 1 is the major trophoblast receptor for laminin 1 and a functional receptor for laminins 2/4 and 10/11. When trophoblast cells are cultured on substrates of these three laminins, they attach and spread on all three, but show decreased proliferation on laminin 1. These results show that the alpha 7 beta 1 integrin is expressed by trophoblast cells and acts as receptor for several isoforms of laminin during implantation. These interactions are not only important for trophoblast adhesion and spreading but may also play a role in regulating trophectoderm proliferation and differentiation.  相似文献   

4.
5.
W J Krause  J H Cutts 《Acta anatomica》1985,123(3):156-171
For the first 9 days of gestation, opossum embryos float in uterine secretions, separated from maternal tissues by a shell membrane. Each embryo is part of the wall of its hollow embryonic sphere. By the 10th day of development, the embryo becomes enveloped by both the amnion and yolk-sac. The yolk-sac consists of vascular and non-vascular portions and, together with the surrounding trophectoderm (trophoblast), forms the yolk-sac placenta of the opossum: the allantois does not contribute to formation of the placenta. The vascular portion of the yolk-sac placenta establishes an intimate relationship with the uterine epithelium soon after loss of the shell membrane. The yolk-sac placenta is non-invasive. Cells of the trophoblast exhibit numerous microvilli, an apical endocytic complex and the lateral and basal cell membrane are elaborately folded. These features suggest a cell that is active in the transport of materials. Junctional complexes between cells of the trophoblast and uterine epithelium were not observed. The uterine epithelium changes from ciliated pseudostratified columnar with few infoldings of lateral and basal cell membranes, to non-ciliated simple columnar in which these membranes show elaborate infoldings. The cells show numerous inclusions and mitochondria are polarized to the basal half of the cell. These features suggest a cell that also is active in the transport of materials.  相似文献   

6.
7.
Hsp105 (Hsp105alpha and Hsp105beta), major heat shock proteins in mammalian cells, belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105alpha has completely different effects on stress-induced apoptosis depending on cell type. However, the molecular mechanisms by which Hsp105alpha regulates stress-induced apoptosis are not fully understood. Here, we established HeLa cells that overexpress either Hsp105alpha or Hsp105beta by removing doxycycline and examined how Hsp105 modifies staurosporine (STS)-induced apoptosis in HeLa cells. Apoptotic features such as the externalization of phosphatidylserine on the plasma membrane and nuclear morphological changes were induced by the treatment with STS, and the STS-induced apoptosis was suppressed by overexpression of Hsp105alpha or Hsp105beta. In addition, we found that overexpression of Hsp105alpha or Hsp105beta suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria. Furthermore, the translocation of Bax to mitochondria, which results in the release of cytochrome c from the mitochondria, was also suppressed by the overexpression of Hsp105alpha or Hsp105beta. Thus, it is suggested that Hsp105 suppresses the stress-induced apoptosis at its initial step, the translocation of Bax to mitochondria in HeLa cells.  相似文献   

8.
We have previously reported that a mutation in the ankyrin repeats of mouse Notch2 results in embryonic lethality by embryonic day 11.5 (E11.5), showing developmental retardation at E10.5. This indicated that Notch2 plays an essential role in postimplantation development in mice. Here, we demonstrate that whole embryo culture can circumvent developmental retardation of Notch2 mutant embryos for up to 1 day, suggesting that the lethality was primarily caused by extraembryonic defects. Histological examinations revealed delayed entry of maternal blood into the mutant placenta and poor blood sinus formation at later stages. Notch2-expressing cells appeared around maternal blood sinuses. Specification of trophoblast subtypes appeared not to be drastically disturbed and expression of presumptive downstream genes of Notch2 signaling was not altered by the Notch2 mutation. Thus, in the developing mouse placenta, Notch2 is unlikely to be involved in cell fate decisions, but rather participates in formation of maternal blood sinuses. In aggregation chimeras with wild-type tetraploid embryos, the mutant embryos developed normally until E12.5, but died before E13.5. The chimeric placentas showed a restored maternal blood sinus formation when compared with the mutant placentas, but not at the level of wild-type diploid placentas. Therefore, it was concluded that the mutant suffers from defects in maternal blood sinus formation. Thus, Notch2 is not cell autonomously required for the early cell fate determination of subtypes of trophoblast cells, but plays an indispensable role in the formation of maternal blood sinuses in the developing mouse placenta.  相似文献   

9.
Hsp105alpha and Hsp105beta are major heat shock proteins in mammalian cells that belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105alpha has opposite effects on stress-induced apoptosis depending on the cell type. However, it is not fully understood how Hsp105 regulates stress-induced apoptosis. In this study, we examined how Hsp105alpha and Hsp105beta regulate H2O2-induced apoptosis by using HeLa cells in which expression of Hsp105alpha or Hsp105beta was regulated using doxycycline. Overexpression of Hsp105alpha and Hsp105beta suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria in H2O2-treated cells. Furthermore, both c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) were activated by treatment with H2O2, and the activation of both kinases was suppressed by overexpression of Hsp105alpha and Hsp105beta. However, H2O2-induced apoptosis was suppressed by treatment with a potent inhibitor of p38 MAPK, SB202190, but not a JNK inhibitor, SP600125. These findings suggest that Hsp105alpha and Hsp105beta suppress H2O2-induced apoptosis by suppression of p38 MAPK signaling, one of the essential pathways for apoptosis.  相似文献   

10.
Disruption of the mouse gene encoding the blood coagulation inhibitor thrombomodulin (Thbd) leads to embryonic lethality caused by an unknown defect in the placenta. We show that the abortion of thrombomodulin-deficient embryos is caused by tissue factor-initiated activation of the blood coagulation cascade at the feto-maternal interface. Activated coagulation factors induce cell death and growth inhibition of placental trophoblast cells by two distinct mechanisms. The death of giant trophoblast cells is caused by conversion of the thrombin substrate fibrinogen to fibrin and subsequent formation of fibrin degradation products. In contrast, the growth arrest of trophoblast cells is not mediated by fibrin, but is a likely result of engagement of protease-activated receptors (PAR)-2 and PAR-4 by coagulation factors. These findings show a new function for the thrombomodulin-protein C system in controlling the growth and survival of trophoblast cells in the placenta. This function is essential for the maintenance of pregnancy.  相似文献   

11.
Heat shock protein HSP90 plays important roles in cellular regulation, primarily as a chaperone for a number of key intracellular proteins. We report here that the two HSP90 isoforms, alpha and beta, also localize on the surface of cells in the nervous system and are involved in their migration. A 94-kDa surface antigen, the 4C5 antigen, which was previously shown to be involved in migration processes during development of the nervous system, is shown to be identical to HSP90alpha using mass spectrometry analysis. This identity is further confirmed by immunoprecipitation experiments and by induction of 4C5 antigen expression in heat shock-treated embryonic rat brain cultures. Moreover, immunocytochemistry on live cerebellar rat cells reveals cell surface localization of both HSP90alpha and -beta. Cell migration from cerebellar and sciatic nerve explants is inhibited by anti-HSP90alpha and anti-HSP90beta antibodies, similarly to the inhibition observed with monoclonal antibody 4C5. Moreover, immunostaining with rhodamine-phalloidin of migrating Schwann cells cultured in the presence of antibodies against both alpha and beta isoforms of HSP90 reveals that HSP90 activity is associated with actin cytoskeletal organization, necessary for lamellipodia formation.  相似文献   

12.
It has been argued that the molecular chaperone Hsp90 guards the organism against genetic variations by stabilizing variant Hsp90 substrate proteins. However, little is known about polymorphisms affecting its own functions. We have followed up on a recent study describing two polymorphisms that alter the amino acid sequences of the two Hsp90 isoforms Hsp90alpha and Hsp90beta. Hsp90 is essential for cell proliferation in the budding yeast Saccharomyces cerevisiae, but the human proteins can replace the endogenous ones. In this growth assay, the variant V656M of Hsp90beta was indistinguishable from wild-type. In contrast, the Hsp90alpha variant Q488H, which carries an alteration of a very highly conserved residue, was severely defective for growth compared to wild-type Hsp90alpha. Hence, the characteristics of this yeast-based system-simplicity, rapidity, low cost-make it ideal for phenotype screening of polymorphisms in HSP90 and possibly many other human genes.  相似文献   

13.
14.
15.
16.
17.
18.
The 90-kDa heat-shock protein (Hsp90) operates in the context of a multichaperone complex to promote maturation of nuclear and cytoplasmic clients. We have discovered that Hsp90 and the cochaperone Sba1/p23 accumulate in the nucleus of quiescent Saccharomyces cerevisiae cells. Hsp90 nuclear accumulation was unaffected in sba1Δ cells, demonstrating that Hsp82 translocates independently of Sba1. Translocation of both chaperones was dependent on the α/β importin SRP1/KAP95. Hsp90 nuclear retention was coincident with glucose exhaustion and seems to be a starvation-specific response, as heat shock or 10% ethanol stress failed to elicit translocation. We generated nuclear accumulation-defective HSP82 mutants to probe the nature of this targeting event and identified a mutant with a single amino acid substitution (I578F) sufficient to retain Hsp90 in the cytoplasm in quiescent cells. Diploid hsp82-I578F cells exhibited pronounced defects in spore wall construction and maturation, resulting in catastrophic sporulation. The mislocalization and sporulation phenotypes were shared by another previously identified HSP82 mutant allele. Pharmacological inhibition of Hsp90 with macbecin in sporulating diploid cells also blocked spore formation, underscoring the importance of this chaperone in this developmental program.  相似文献   

19.
We cloned and sequenced a chinook salmon Hsp90 cDNA; sequence analysis shows it to be Hsp90alpha. Phylogenetic analysis supports the hypothesis that alpha and beta paralogs of Hsp90 arose as a result of a gene duplication event and that they diverged early in the evolution of vertebrates, before tetrapods separated from the teleost lineage. Among several differences distinguishing poikilothermic Hsp90alpha sequences from their bird and mammal orthologs, the teleost versions specifically lack a characteristic QTQDQP phosphorylation site near the N-terminus. We used the cDNA to develop an RNA (Northern) blot to quantify cellular Hsp90 mRNA levels. Chinook salmon embryonic (CHSE-214) cells responded to heat shock with a rapid rise in Hsp90 mRNA through 4 h, followed by a gradual decline over the next 20 h. Hsp90 mRNA level may be useful as a stress indicator, especially in a laboratory setting or in response to acute heat stress.  相似文献   

20.
Hsp105alpha, which belongs to the HSP105/110 family, is expressed at especially high levels in the brain in mammals and has been shown to prevent stress-induced apoptosis in neuronal cells. This protein is also expressed transiently at high levels during mouse embryogenesis, and is characteristically found in apoptotic cells and bodies in embryos. In the present study, to elucidate a role of Hsp105alpha in embryonal cells, we established Hsp105alpha-overexpressing F9 cells, and examined the effect of Hsp105alpha on cell death induced by etoposide, heat shock or cycloheximide. Apoptotic cell death was induced in cells treated with etoposide or heat shock, and necrotic cell death was induced in cells by cycloheximide. The apoptosis was enhanced by overexpression of HSP105alpha, whereas the necrosis was not affected by overexpression of HSP105alpha. Furthermore, Hsp105alpha seemed to modulate the stress-induced apoptosis at different steps of the apoptotic process depending on the stress stimuli. The present findings together with the previous observation on neuronal cells suggested that Hsp105 has opposite effects on stress-induced apoptosis depending on the cell type; a pro-apoptotic effect in embryonal cells and an anti-apoptotic effect in neuronal cells. The apoptosis-enhancing activity of Hsp105alpha may play an important role during embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号