首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Fumonisin B1 (FB1), the most potent of the fumonisin mycotoxins, is a carcinogen and causes a wide range of species-specific toxicoses. FB1 modulates the activity of protein kinase C (PKC), a family of phospholipid-dependent serine/threonine kinases that play important role in modulating a variety of biologic responses ranging from regulation of cell growth to cell death. Although it has been demonstrated that FB1 induces apoptosis in many cell lines, the precise mechanism of apoptosis is not fully understood. In this study, we investigated the membrane localization of various PKC isoforms, PKC enzyme activity, and its downstream targets, namely nuclear factor-kappa B (NF-kappaB), tumor necrosis factor alpha (TNFalpha), and caspase 3, in porcine renal epithelial (LLC-PK1) cells. FB1 repressed cytosol to membrane translocation of PKC-alpha, -delta, -epsilon, and -zeta isoforms over 24-72 h. The FB1-induced membrane PKC repression was corroborated by a concentration-dependent decrease in total PKC activity. Exposure of cells to phorbol 12-myristate 13-acetate (PMA) for this duration also resulted in repressed PKC membrane localization and activity comparable to FB1. Exposure of cells to FB1 (10 microM) was associated with inhibition of cytosol to nuclear translocation of NF-kappaB and NF-kappaB-DNA binding at 72 h. The expression of TNFalpha was significantly inhibited at 24 and 48 h in response to 1 and 10 microM FB1. Increased caspase 3 activity was observed in LLC-PK1 cells exposed to > or =1 microM FB1 at 48 h. PMA also increased the caspase 3 activity at 24 and 48 h. Results suggest that FB1-induced apoptosis involves the activation of caspase 3, which is associated with the repression of PKC and possibly its down-stream effectors, NF-kappaB and TNFalpha.  相似文献   

7.
8.
The cellular mechanism by which the angiotensin II (AII) agonist, Sar1-AII, inhibits production and release of angiotensinogen in human hepatoma HepG2 cells was examined. Pretreatment of HepG2 cells with pertussis toxin attenuated the ability of Sar1-AII to block angiotensinogen production. This effect could be correlated with the in situ ADP-ribosylation of a protein(s) of apparent molecular weight 39,000-41,000 on SDS-PAGE, and attenuation of the ability of Sar1-AII to inhibit cAMP accumulation. The role of cAMP in angiotensinogen production was examined. A transient increase in cAMP accumulation above basal could be evoked by forskolin (8-fold) or by glucagon (5-fold) using insulin-deficient media. Although neither forskolin nor glucagon had a significant effect on angiotensinogen production agents producing a sustained increase in intracellular cAMP (8-bromo-cAMP, dibutyryl-cAMP, cholera toxin) were able to increase angiotensinogen production. Although these data indicate that intracellular cAMP is a regulatory factor in angiotensinogen production other evidence suggests that modulation of intracellular cAMP is not entirely responsible for the effects of Sar1-AII.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Previous studies from our laboratory suggest that protein kinase C (PKC) is involved in the angiotensin II (AII)-induced increase in the expression of genes encoding proenkephalin and catecholamine biosynthesizing enzymes in primary cultured bovine adrenal medullary (BAM) cells. The purpose of this study was to examine the effects of [Sar1]-AII (S1-AII), an AII agonist, on PKC activity in BAM cells. Thirty-minute incubation with S1-AII produced a dose-dependent activation of PKC. The particulate PKC activity was significantly increased by 2 nM S1-AII after both 30 min and 12 h of incubation. A high concentration of S1-AII (200 nM) caused an increase in particulate PKC activity after 30 min of incubation and this increase was still observed after 18 h of continuous incubation. [Sar1, Thr8]-angiotensin II (S1, T8-AII) (100 microM), an AII antagonist, inhibited the effect of S1-AII (20 nM) on PKC activity, suggesting a specific AII receptor-mediated effect. An increase in BAM cell particulate PKC immunoreactivity after 18 h of S1-AII treatment was observed in Western blot analysis of PKC-immunoreactive protein (82 kDa). The persistent activation of PKC seen in this study is consistent with our hypothesis that PKC may mediate the S1-AII-induced increase in the expression of genes encoding proenkephalin and catecholamine synthesizing enzymes in BAM cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号