首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Two recombination steps in embryonic stem (ES) cells were adopted to generate a floxed Germ Cell Nuclear Factor (GCNF) allele. First, a targeting vector containing a loxP site upstream of exon 4, encoding the DNA binding domain (DBD), and a floxed NeoTK double selection cassette downstream of exon 4 was integrated into the GCNF locus by homologous recombination. Second, a Cre-expressing vector was transiently introduced to remove the floxed NeoTK cassette via site-specific recombination. Heterogeneous ES cell populations were found in a single colony after Cre transfection and were separated using an ES cell re-pick step. Floxed GCNF mice were generated and had normal GCNF expression in the adult gonads. Using the Msx2Cre transgenic mice, the floxed GCNF can be completely deleted in the female germline. Taken together, the floxed GCNF mice were successfully generated and female germline deletion of the floxed GCNF allele was achieved using Msx2Cre mice.  相似文献   

2.
Summary: Conditional and tissue specific gene targeting using the Cre‐loxP recombination system in combination with established ES cell techniques has become a standard for in vivo loss of function studies. In a typical flox and delete gene targeting strategy, the loxP‐neo‐loxP cassette is inserted into an intron and an additional loxP site is located in one of the homology arms so that loxP sites surround a functionally essential part of the gene. The neo cassette in usually removed by transient expression of the Cre recombinase in ES cells to avoid selection gene interference and genetic ambiquity. However, this causes a significant increase in manipulation of ES cells and often compromises ES cell pluripotency. Here we describe a method in which the floxed neo gene is removed from a knockout allele by infecting 16‐cell‐stage morulae by the recombinant Cre adenovirus. This virus provides only transient Cre expression and does not integrate into the mouse genome. Produced mosaic mice transmitted the desired allele without the neo cassette with high frequency to their offspring. This method is rapid and easy and does not require any special equipment. Moreover, because superovulated mice can be used as donors, this method does not necessitate a large number of mice. genesis 31:126–129, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

3.
根据GenBank已发表的pEGFP-C1序列,设计并合成两对引物,PCR扩增出两端各含一loxP位点的GFP表达盒GFP-loxP。克隆于转移载体pSKLR获得pSKLR-GFP-loxP。基于同源重组原理, pSKLR-GFP-loxP与 PRV SH株基因组DNA共转染293T细胞,在BrdU 的筛选压力下,利用蚀斑法在TK-143细胞上筛选出表达GFP的TK基因缺失的重组毒株rPRV1。将表达Cre酶的质粒载体pPOG231与rPRV1基因组DNA共转染293T细胞,在Cre酶的作用下去除GFP表达盒以及一个loxP位点,筛选得到含单个loxP位点的重组病毒株rPRV2。PCR 扩增证实所获得的重组病毒TK缺失270bp,只有一个34bp的loxP位点,并且能在RK-13细胞上稳定传代。LD50试验表明rPrV2的毒力下降。  相似文献   

4.
5.
The role of the cytosolic domain of tissue factor (TF) in signal transduction and gene regulation was studied in mice with a targeted deletion of the 18 carboxy-terminal intracellular amino acids. This deletion was introduced in exon 6 along with a floxed neo(R) selection cassette in intron 5 using homologous recombination in embryonic stem cells. Removal of the floxed neo(R) cassette by in vivo Cre-mediated loxP recombination yielded TF(+/deltaCT) and TF(deltaCT/deltaCT) mice. In contrast to TF(-/-) mice, TF(+/deltaCT) and TF(deltaCT/deltaCT) mice displayed normal embryonic development, survival, fertility, and blood coagulation. Factor VIIa or factor Xa stimulation produced similar p44/42 MAPK activation in TF(+/+) and TF(deltaCT/deltaCT) fibroblasts. These data, based on expression of a TF(deltaCT) molecule from the endogenous TF locus, provide conclusive proof that the cytosolic domain of TF is not essential for signal transduction in embryogenesis and in physiological postnatal processes.  相似文献   

6.
7.
Foxc2 is a single-exon gene and a key regulator in development of multiple organs, including kidney. To avoid embryonic lethality of conventional Foxc2 knockout mice, we conditionally deleted Foxc2 in kidneys. Conditional targeting of a single-exon gene involves the large floxed gene segment spanning from promoter region to coding region to avoid functional disruption of the gene by the insertion of a loxP site. Therefore, in ES cell clones surviving a conventional single-selection, e.g., neomycin-resistant gene (neo) alone, homologous recombination between the long floxed segment and target genome results in a high incidence of having only one loxP site adjacent to the selection marker. To avoid this limitation, we employed a double-selection system. We generated a Foxc2 targeting construct in which a floxed segment contained 4.6 kb mouse genome and two different selection marker genes, zeocin-resistant gene and neo, that were placed adjacent to each loxP site. After double-selection by zeocin and neomycin, 72 surviving clones were screened that yielded three correctly targeted clones. After floxed Foxc2 mice were generated by tetraploid complementation, we removed the two selection marker genes by a simultaneous-single microinjection of expression vectors for Dre and Flp recombinases into in vitro-fertilized eggs. To delete Foxc2 in mouse kidneys, floxed Foxc2 mice were mated with Pax2-Cre mice. Newborn Pax2-Cre; Foxc2loxP/loxP mice showed kidney hypoplasia and glomerular cysts. These results indicate the feasibility of generating floxed Foxc2 mice by double-selection system and simultaneous removal of selection markers with a single microinjection.  相似文献   

8.
Conditional gene targeting using the Cre/loxP technology generally includes integration of a selection marker cassette flanked by loxP recognition sites (floxed) in the target gene locus. Subsequent marker removal avoids possible impairment of gene expression or mosaicism due to partial and total deletions after Cre-mediated recombination in vivo. The use of deleter Cre mice for in vivo marker removal in floxed connexin43 mice revealed considerable mosaicism, but no selective marker removal. In addition, we noted that several Cre transgenic lines displayed spontaneous ectopic activity, reminiscent of deleter Cre mice, and required the confirmation of cell type-specific deletion in every individual mouse. When we used myosin heavy chain promoter Cre (alphaMyHC-Cre) mice for cardiomyocyte specific deletion, we observed, in addition to cardiomyocyte-restricted or complete excision, selective marker removal in a subgroup of mice as well. Thus, selective marker removal can be achieved as a byproduct of cell-type restricted deletion.  相似文献   

9.
A Cre recombinase expression cassette was inserted into the X-linked Hprt locus by gene targeting in a mouse embryonic stem (ES) cell line isogenic to strain 129S1/SvImJ (129S1), then the transgene was introduced into 129S1 mice through ES cell chimeras. When females hemizygous for this transgene were mated to males carrying a neomycin selection cassette flanked by loxP sites, the cassette was always excised regardless of Cre inheritance and without detectable mosaicism. The usefulness of this "Cre-deleter" transgenic line is in its efficiency and defined genetic status in terms of mouse strain and location of the transgene.  相似文献   

10.
The Cre-lox system is an important tool for genetic manipulation in embryonic stem cells. We previously reported that the cassette exchange strategy using the mutant lox66/71 and lox2272 combination showed high recombination efficiency and stability. However, the efficiency was strongly affected by the position of chromosomal target lox sites. To enrich successful cassette exchange events, even in clones showing lower recombination efficiency, we have improved exchange vector. The Diphtheria toxin A fragment gene was placed in the un-exchanged region for negative selection and the puromycin N-acetyltransferase gene, instead of the neomycin phosphotransferase gene, was used for positive selection. By reducing random integration, the frequency of successful cassette exchange increased up to 2-4 fold. Furthermore, by adding the third lox site to induce intrarmolecular recombination, the recombination efficiency of cassette exchange itself was improved, and the frequency increased to maximum 5 fold, in which the percentage of exchanged clones reached to 50-70%. This strategy should be useful for other recombinase-mediated cassette exchanges.  相似文献   

11.
12.
Recycling selectable markers in mouse embryonic stem cells.   总被引:7,自引:2,他引:5       下载免费PDF全文
As a result of gene targeting, selectable markers are usually permanently introduced into the mammalian genome. Multiple gene targeting events in the same cell line can therefore exhaust the pool of markers available and limit subsequent manipulations or genetic analysis. In this study, we describe the combined use of homologous and CRE-loxP-mediated recombination to generate mouse embryonic stem cell lines carrying up to four targeted mutations and devoid of exogenous selectable markers. A cassette that contains both positive and negative selectable markers flanked by loxP sites, rendering it excisable by the CRE protein, was constructed. Homologous recombination and positive selection were used to disrupt the Rep-3 locus, a gene homologous to members of the mutS family of DNA mismatch repair genes. CRE-loxP-mediated recombination and negative selection were then used to recover clones in which the cassette had been excised. The remaining allele of Rep-3 was then subjected to a second round of targeting and excision with the same construct to generate homozygous, marker-free cell lines. Subsequently, both alleles of mMsh2, another mutS homolog, were disrupted in the same fashion to obtain cell lines homozygous for targeted mutations at both the Rep-3 and mMsh2 loci and devoid of selectable markers. Thus, embryonic stem cell lines obtained in this fashion are suitable for further manipulation and analysis involving the use of selectable markers.  相似文献   

13.
Gene targeting and site-specific recombination strategies allow the precise modification of the eukaryotic genome. Many of the recombination strategies currently used, however, will introduce a selection marker gene at the modified site. DNA sequences of prokaryotic origin like vector sequences, selection marker, and reporter genes have been shown to markedly influence the regulation of the modified genomic loci. In order to avoid the insertion of excess sequences, a biphasic recombination strategy involving homologous recombination and Cre-recombinase-mediated cassette exchange (RMCE) was devised and used to insert a foreign gene into the beta-casein gene in murine embryonic stem cells. The incompatibility of the heterospecific lox sites used for the recombinase-mediated cassette exchange was found to be critical for the success of the strategy. The frequently used mutant site lox511, which differs from the natural loxP site by a single point mutation, proved unsuitable for this approach. A mutant lox site carrying two point mutations, however, was highly effective and 90% of the selected cell clones carried the desired modification. This biphasic recombination strategy allows for the efficient and precise modification of gene loci without the concomitant introduction of a selectable marker gene.  相似文献   

14.
Smad2 is an intracellular mediator of the transforming growth factor beta signaling (TGFbeta) pathway. It has been previously shown that, in the mouse, ablation of functional Smad2 results in embryonic lethality due to gastrulation defects. To circumvent the early lethality and study the spatially and temporally specific functions of Smad2, we utilized the Cre-loxP system to generate a Smad2 conditional allele. Here we show that a conditional allele, Smad2(flox), was generated. In this allele, exons 9 and 10 are flanked by loxP sites and the gene is functionally wildtype. Cre-mediated recombination results in a deletion allele which phenocopies our previously reported Smad2(DeltaC) null mutation. To generate this conditional allele, we first made a targeted mutation which introduced a floxed neo cassette into intron 10. This allele (Smad2(3loxP)) functions hypomorphically when placed opposite a null allele, and unlike the other published Smad2 hypomorphic allele, can be maintained in the homozygous state.  相似文献   

15.
Conditional gene expression or gene disruption using Cre/loxP- or FLP/frt-based recombination systems are valuable tools for studying gene function in development and disease. Recombinant adenoviral vectors expressing Cre recombinase have been suggested as an alternative for deletion of floxed sequences. To further improve this approach we generated a high-capacity adenoviral (HC-Ad) vector expressing Cre (HC-Adcre). In this vector all viral coding sequences are deleted resulting in decreased toxicity. In the present study HC-Adcre efficiently mediated recombination between two loxP sites located in the genome of a reporter cell line. When intravenously injected into ROSA26 reporter mice, a floxed sequence was excised in hepatocytes resulting in expression of the beta-gal reporter. Our data indicate that HC-Ad vectors expressing Cre effectively delete floxed sequences in vivo and have a significant potential as a tool for functional studies in mice.  相似文献   

16.
Site-directed DNA integration has been achieved by using a pair of mutant lox sites, a right element (RE) mutant lox site and a left element (LE) mutant lox site [Albertet al. (1995)Plant J., 7, 649-659], in mouse embryonic stem (ES) cells. We established ES cell lines carrying a single copy of the wild-type lox Por LE mutant lox site as a target and examined the frequency of site-specific integration of a targeting vector carrying a loxP or RE mutant lox site induced by Cre transient expression. Since our targeting vector contains a complete neo gene, random integrants can form colonies as in the case of a gene targeting event through homologous recombination. With our system, the frequency of site-specific integration via the mutant lox sites reached a maximum of 16%. In contrast, the wild-type loxP sites yielded very low frequencies (<0.5%) of site-specific integration events. This mutatedloxsystem will be useful for 'knock-in' integration of DNA in ES cells.  相似文献   

17.
To introduce restricted DNA recombination events into catecholaminergic neurons using the Cre/loxP technology, we generated transgenic mice carrying the Cre recombinase gene driven by a 9 kb rat tyrosine hydroxylase (TH) promoter. Immunohistochemistry performed on transgenic mouse brain sections revealed a high number of cells expressing Cre in areas where TH is normally expressed, including the olfactory bulb, hypothalamic and midbrain dopaminergic neurons, and the locus coeruleus. Double immunohistochemistry and immunofluorescence indicated that colocalization of TH and Cre is greater than 80%. Cre expression was also found in TH-positive amacrine neurons of the retina, chromaffin cells of the adrenal medulla, and sympathetic ganglia. We crossbred TH-Cre mice with the floxed reporter strain Z/AP and observed efficient Cre-mediated recombination in all areas expressing TH, indicating that transgenic Cre is functional. Therefore, we have generated a valuable transgenic mouse strain to induce specific mutations of "floxed" genes in catecholaminergic neurons.  相似文献   

18.
Recombinase-mediated cassette exchange (RMCE), when applied to mouse embryonic stem (ES) cells, promises to increase the ease with which genetic alterations can be introduced into targeted genomic loci in the mouse. However, existing selection strategies for identifying ES cells in which replacement DNA cassettes from a carrier plasmid have been exchanged correctly into a defined locus are suboptimal. Here, we report the generation in mouse ES cells of a loxed cassette acceptor (LCA) allele within the glucokinase (gk) gene locus. Using the gkLCA as a test allele, we developed a staggered positive-negative selection strategy that facilitates efficient identification of ES cell clones in which a DNA replacement cassette from a carrier plasmid has been exchanged correctly into the gkLCA allele. This selection strategy, by facilitating more efficient production of ES cell clones with various replacement DNA cassettes, should accelerate targeted repetitive introduction of gene modifications into the mouse.  相似文献   

19.
To produce a humanized mouse, it is critical to obtain a correct expression of a human gene/cDNA after insertion into a mouse locus. We previously generated a targeted allele in which the PGK-neo cassette, flanked by lox71 and loxP, was inserted into the first exon of the mouse endogenous transthyretin (Ttr) gene in ES cells. Using these ES cells, we showed that a human transthyretin (TTR) cDNA with the PGK-puro cassette can be efficiently inserted into this locus by Cre-mediated recombination, and that the human TTR cDNA was expressed in a tissue-specific manner under the control of the mouse endogenous Ttr promoter. To examine whether the PGK-puro cassette or IRES could affect the expression of human TTR cDNA, we generated four mouse lines using Cre and Flp-mediated recombination. The mouse line containing the PGK-puro cassette, but not IRES, exhibited quantitatively and temporally similar expression of human TTR cDNA. Removal of the PGK-puro cassette significantly downregulated the expression of the cDNA. The insertion of IRES sequence upstream of the human TTR cDNA resulted in decreased expression, even in the presence of the PGK-puro cassette. The mouse line containing IRES, but not PGK-puro, showed the lowest level of expression. These results suggest that the PGK-puro cassette is necessary to obtain the enhanced expression of a co-existing human cDNA in the mouse Ttr locus, even though the expression of co-existing cDNA was under the control of the mouse endogenous promoter.  相似文献   

20.
Site-specific integration is an attractive method for the improvement of current transformation technologies aimed at the production of stable transgenic plants. Here, we present a Cre-based targeting strategy in Arabidopsis (Arabidopsis thaliana) using recombinase-mediated cassette exchange (RMCE) of transferred DNA (T-DNA) delivered by Agrobacterium tumefaciens. The rationale for effective RMCE is the precise exchange of a genomic and a replacement cassette both flanked by two heterospecific lox sites that are incompatible with each other to prevent unwanted cassette deletion. We designed a strategy in which the coding region of a loxP/lox5171-flanked bialaphos resistance (bar) gene is exchanged for a loxP/lox5171-flanked T-DNA replacement cassette containing the neomycin phosphotransferase (nptII) coding region via loxP/loxP and lox5171/lox5171 directed recombination. The bar gene is driven by the strong 35S promoter, which is located outside the target cassette. This placement ensures preferential selection of RMCE events and not random integration events by expression of nptII from this same promoter. Using root transformation, during which Cre was provided on a cotransformed T-DNA, 50 kanamycin-resistant calli were selected. Forty-four percent contained a correctly exchanged cassette based on PCR analysis, indicating the stringency of the selection system. This was confirmed for the offspring of five analyzed events by Southern-blot analysis. In four of the five analyzed RMCE events, there were no additional T-DNA insertions or they easily segregated, resulting in high-efficiency single-copy RMCE events. Our approach enables simple and efficient selection of targeting events using the advantages of Agrobacterium-mediated transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号