首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract A theoretical analysis of the concept of recruitment limitation leads to the conclusion that most populations should he regarded as jointly limited by recruitment and interactions between individuals after recruitment. The open nature of local marine systems does not permit avoidance of density-dependent interactions; it simply may make them more difficult to detect. Local populations consisting of settled organisms may not experience density-dependent interactions under some circumstances, but the entire species population consisting of the collection of local populations and their planktonic larvae must have density-dependent dynamics. Any local population of settled individuals can escape density dependence if sufficient density dependence occurs among planktonic larvae or within other local populations. Common conceptions of density dependence are too narrow, leading too often to the conclusion that it is absent from a system. It is equally wrong to expect that density-dependent interactions after settlement determine local population densities independently of recruitment. Special circumstances allowing density dependence to act strongly and quickly are needed before density dependence can neutralize the effects of recruitment. Recruitment limitation and density-dependent interactions therefore should not be regarded as alternatives but as jointly acting to determine the densities of marine benthic populations. Moreover, the interaction between fluctuating recruitment and density dependence is potentially the most interesting feature of recruitment limitation. For example, this interaction may be an important diversity-maintaining mechanism for marine systems.  相似文献   

2.
1. In demographically open marine systems, the extent to which density-dependent processes in the benthic adult phase are required for population persistence is unclear. At one extreme, represented by the recruitment limitation hypothesis, larval supply may be insufficient for the total population size to reach a carrying capacity and density-independent mortality predominates. At the opposite extreme, populations are saturated and density-dependent mortality is sufficiently strong to reshape patterns established at settlement. 2. We examined temporal variation in the way density-independent and density-dependent mortality interact in a typical sessile marine benthic invertebrate, the acorn barnacle Semibalanus balanoides (L.), over a 2-year period. 3. Recruitment was manipulated at two high recruitment sites in north Wales, UK to produce recruit densities covering the range naturally found in this species. Following manipulation, fixed quadrats were monitored using digital photography and temporal changes in mortality and growth rate were examined. 4. Over a 2-year period there was a clear, spatially consistent, over-compensatory relationship between the density of recruits and adult abundance indicating strong density-dependent mortality. The strength of density dependence intensified with increasing recruitment. 5. Density-dependent mortality did not operate consistently over the study period. It only operated in the early part of the benthic phase, but the pattern of adult abundance generated was maintained throughout the whole 2-year period. Thus, early life-history processes dictated adult population abundance and dynamics. 6. Examination of the natural recruitment regime in the area of study indicated that both positive and negative effects of recruitment will occur over scales varying from kilometres to metres.  相似文献   

3.
Debate on the control of population dynamics in reef fishes has centred on whether patterns in abundance are determined by the supply of planktonic recruits, or by post-recruitment processes. Recruitment limitation implies little or no regulation of the reef-associated population, and is supported by several experimental studies that failed to detect density dependence. Previous manipulations of population density have, however, focused on juveniles, and there have been no tests for density-dependent interactions among adult reef fishes. I tested for population regulation in Coryphopterus glaucofraenum, a small, short-lived goby that is common in the Caribbean. Adult density was manipulated on artificial reefs and adults were also monitored on reefs where they varied in density naturally. Survival of adult gobies showed a strong inverse relationship with their initial density across a realistic range of densities. Individually marked gobies, however, grew at similar rates across all densities, suggesting that density-dependent survival was not associated with depressed growth, and so may result from predation or parasitism rather than from food shortage. Like adult survival, the accumulation of new recruits on reefs was also much lower at high adult densities than at low densities. Suppression of recruitment by adults may occur because adults cause either reduced larval settlement or reduced early post-settlement survival. In summary, this study has documented a previously unrecorded regulatory mechanism for reef fish populations (density-dependent adult mortality) and provided a particularly strong example of a well-established mechanism (density-dependent recruitment). In combination, these two compensatory mechanisms have the potential to strongly regulate the abundance of this species, and rule out the control of abundance by the supply of recruits.  相似文献   

4.
It is generally assumed that fish populations are regulated primarily in the juvenile (pre-recruit) phase of the life cycle, although density dependence in growth and reproductive parameters within the recruited phase has been widely reported. Here we present evidence to suggest that density-dependent growth in the recruited phase is a key process in the regulation of many fish populations. We analyse 16 fish populations with long-term records of size-at-age and biomass data, and detect significant density-dependent growth in nine. Among-population comparisons show a close, inverse relationship between the estimated decline in asymptotic length per unit biomass density, and the long-term average biomass density of populations. A simple population model demonstrates that regulation by density-dependent growth alone is sufficient to generate the observed relationship. Density-dependent growth should be accounted for in fisheries' assessments, and the empirical relationship established here can provide indicative estimates of the density-dependent growth parameter where population-specific data are lacking.  相似文献   

5.
This paper discusses the basic types of dynamical behavior of populations obtained in discrete models, such as monotonous dynamics, stable limited cycles, and chaotic variations. All these modes are shown to have possibly arisen in the evolution of limited populations under the effect of density-independent selection. This effect together with that of density-dependent non-selective factors has been termed F-selection, which is characterized by independence of relative fitnesses from population density, whereas populations may be ecologically limited; in other words, absolute fitnesses prove to be a function of population size. The characteristic of F-selection is to be not sensitive to changes in population size but to lead to fluctuations, that create conditions for achieving density-dependent selection.  相似文献   

6.
Population regulation is fundamental to the long-term persistence of populations and their responses to harvesting, habitat modification, and exposure to toxic chemicals. In fish and other organisms with complex life histories, regulation may involve density dependence in different life-stages and vital rates. We studied density dependence in body growth and mortality through the life-cycle of laboratory populations of zebrafish Danio rerio. When feed input was held constant at population-level (leading to resource limitation), body growth was strongly density-dependent in the late juvenile and adult phases of the life-cycle. Density dependence in mortality was strong during the early juvenile phase but declined thereafter and virtually ceased prior to maturation. Provision of feed in proportion to individual requirements (easing resource limitation) removed density dependence in growth and substantially reduced density dependence in mortality, thus indicating that 'bottom-up' effects act on growth as well as mortality, but most strongly on growth. Both growth and mortality played an important role in population regulation, with density-dependent growth having the greater impact on population biomass while mortality had the greatest impact on numbers. We demonstrate a clear ontogenic pattern of change in density-dependent processes within populations of a very small (maximum length 5 mm) fish, maintained in constant homogeneous laboratory conditions. The patterns are consistent with those distilled from studies on wild fish populations, indicating the presence of broad ontogenic patterns in density-dependent processes that are invariant to maximum body size and hold in homogeneous laboratory, as well as complex natural environments.  相似文献   

7.
Hannu  Pöysä  Mauri  Pesonen 《Oikos》2003,102(2):358-366
We investigated whether the degree of exchange with other populations affects the occurrence of density-dependent regulation. We contrasted data from an Icelandic and a Finnish population of breeding wigeons ( Anas penelope ), the former population being more closed than the later. We looked for density dependence in time-series data and investigated whether breeding success is density dependent and plays a role in population dynamics and regulation. Time-series analysis did not reveal density-dependent regulation in either population. Nor did we find evidence of density-dependent breeding success in either population. However, population growth rate appeared to be strongly dependent on the breeding success in the previous year in the closed population but not in the open population. Our findings underline how important it is to link time-series analysis to the study of potential stabilizing mechanisms in order to understand population dynamics and regulation. We also suggest that it may be a difficult task to achieve sustainability in waterfowl harvesting, the theoretical basis of which is density-dependent population regulation.  相似文献   

8.
The relative influences of density-dependent and -independent processes on vital rates and population dynamics have been debated in ecology for over half a century, yet it is only recently that both processes have been shown to operate within the same population. However, generalizations on the role of each process across species are rare. Using a process-orientated generalized linear modelling approach we show that variations in fecundity rates in populations of three species of ungulates with contrasting life histories are associated with density and winter weather in a remarkably similar manner. However, there are differences and we speculate that they are a result of differences in size between the species. Much previous research exploring the association between vital rates, population dynamics and density-dependent and -independent processes has used pattern-orientated approaches to decompose time-series into contributions from density-dependent and -independent processes. Results from these analyses are sometimes used to infer associations between vital rates, density and climatic variables. We compare results from pattern-orientated analyses of time-series with process-orientated analyses and report that the two approaches give different results. The approach of analysing relationships between vital rates, density and climatic variables may detect important processes influencing population dynamics that time-series methodologies may overlook.  相似文献   

9.
Understanding population extinctions is a chief goal of ecological theory. While stochastic theories of population growth are commonly used to forecast extinction, models used for prediction have not been adequately tested with experimental data. In a previously published experiment, variation in available food was experimentally manipulated in 281 laboratory populations of Daphnia magna to test hypothesized effects of environmental variation on population persistence. Here, half of those data were used to select and fit a stochastic model of population growth to predict extinctions of populations in the other half. When density-dependent demographic stochasticity was detected and incorporated in simple stochastic models, rates of population extinction were accurately predicted or only slightly biased. However, when density-dependent demographic stochasticity was not accounted for, as is usual when forecasting extinction of threatened and endangered species, predicted extinction rates were severely biased. Thus, an experimental demonstration shows that reliable estimates of extinction risk may be obtained for populations in variable environments if high-quality data are available for model selection and if density-dependent demographic stochasticity is accounted for. These results suggest that further consideration of density-dependent demographic stochasticity is required if predicted extinction rates are to be relied upon for conservation planning.  相似文献   

10.
The grey-sided vole (Clethrionomys rufocanus) is distributed over the entire island of Hokkaido, Japan, across which it exhibits multi-annual density cycles in only parts of the island (the north-eastern part); in the remaining part of the island, only seasonal density changes occur. Using annual sampling of 189 grey-sided vole populations, we deduced the geographical structure in their second-order density dependence. Building upon our earlier suggestion, we deduce the seasonal density-dependent structure for these populations. Strong direct and delayed density dependence is found to occur during winter, whereas no density dependence is seen during the summer period. The direct density dependence during winter may be seen as a result of food being limited during that season: the delayed density dependence during the winter is consistent with vole-specialized predators (e.g. the least weasel) responding to vole densities so as to have a negative effect on the net growth rate of voles in the following year. We conclude that the observed geographical structure of the population dynamics may be properly seen as a result of the length of the summer in interaction with the differential seasonal density-dependent structure. Altogether, this indicates that the geographical pattern in multi-annual density dynamics in the grey-sided vole may be a result of seasonal forcing.  相似文献   

11.
Many populations of forest Lepidoptera exhibit 10-year cycles in densities, with impressive outbreaks across large regions. Delayed density-dependent interactions with natural enemies are recognized as key factors driving these cyclic population dynamics, but emphasis has typically been on the larval stages. Eggs, pupae and adults also suffer mortality from predators, parasitoids and pathogens, but little is known about possible density relationships between mortality factors and these non-feeding life stages. In a long-term field study, we experimentally deployed autumnal moth (Epirrita autumnata) eggs and pupae to their natural enemies yearly throughout the 10-year population cycle in northern Norway. The abundance of another geometrid, the winter moth (Operophtera brumata), increased in the study area, permitting comparisons between the two moth species in predation and parasitism. Survival of autumnal moth eggs and pupae was related to the moth abundance in an inverse and delayed manner. Egg and pupal parasitoids dominated as density-dependent mortality factors and predicted the subsequent growth rate of the host population size. In contrast, effects of egg and pupal predators were weakly density dependent, and generally predation remained low. Parasitism rates did not differ between the autumnal and winter moth pupae, whereas predators preferred winter moth pupae over those of the autumnal moth. We conclude that parasitism of the autumnal moth by egg and pupal parasitoids can be related to the changes of the moth density in a delayed density-dependent manner. Furthermore, egg and pupal parasitoids cannot be overlooked as causal factors for the population cycles of forest Lepidoptera in general.  相似文献   

12.
THE NATURAL CONTROL OF POPULATIONS OF BUTTERFLIES AND MOTHS   总被引:5,自引:0,他引:5  
1. Life-table data for 14 species of Lepidoptera are analysed by the k -factor technique of Varley & Gradwell (1960). Two factors are shown to be of particular importance in determining fluctuations in abundance from one generation to the next. These key factors are predators and the failure of females to lay their full complement of eggs.
2. Data from 24 studies are reviewed to identify any density-dependent factors that would be capable of regulating the populations about an equilibrium density. In eight studies no density-dependent relationships could be identified, and in a further 13 the only density dependence demonstrated was due to intraspecific competition for resources. It is argued that competition is incapable of regulating populations at low density. In the other three studies, natural enemies are thought to be acting in a density-dependent manner, but their ability to regulate the populations is questioned.
3. The frequency of over-population and of extinction is reviewed and both appear to occur frequently in Lepidoptera. This, coupled with the failure of most studies to demonstrate the existence of density-dependent processes capable of regulating populations, leads the author to reject the model of regulation about an equilibrium density in favour of a model of population limitation by a ceiling set by resources.
4. Fluctuations in resource availability may be important in determining variations in the abundance of many Lepidoptera, but at present too few ecologists have quantified the carrying capacity of habitats occupied by the species they study to generalize about this.  相似文献   

13.
14.
Previous work suggests that red environmental noise can lead to the spurious appearance of delayed density dependence (DDD) in unstructured populations regulated only by direct density dependence. We analysed the effect of noise reddening on the pattern of spurious DDD in several variants of the density-dependent age-structured population model. We found patterns of spurious DDD in structured populations with either density-dependent fertility or density-dependent survival of the first age class, inconsistent with predictions from unstructured population models. Moreover, we found that nonspurious negative DDD always emerges in populations with deterministic chaotic dynamics, regardless of population structure or the type of environmental noise. The effect of noise reddening in generating spurious DDD is often negligible in the chaotic region of population deterministic dynamics. Our findings suggest that differences in species' life histories may exhibit different patterns of spurious DDD (owing to noise reddening) than predicted by unstructured models.  相似文献   

15.
Theoretical and empirical models of populations dynamics have paid little attention to the implications of density-dependent individual growth on the persistence and regulation of small freshwater salmonid populations. We have therefore designed a study aimed at testing our hypothesis that density-dependent individual growth is a process that enhances population recovery and reduces extinction risk in salmonid populations in a variable environment subject to disturbance events. This hypothesis was tested in two newly introduced marble trout (Salmo marmoratus) populations living in Slovenian streams (Zakojska and Gorska) subject to severe autumn floods. We developed a discrete-time stochastic individual-based model of population dynamics for each population with demographic parameters and compensatory responses tightly calibrated on data from individually tagged marble trout. The occurrence of severe flood events causing population collapses was explicitly accounted for in the model. We used the model in a population viability analysis setting to estimate the quasi-extinction risk and demographic indexes of the two marble trout populations when individual growth was density-dependent. We ran a set of simulations in which the effect of floods on population abundance was explicitly accounted for and another set of simulations in which flood events were not included in the model. These simulation results were compared with those of scenarios in which individual growth was modelled with density-independent Von Bertalanffy growth curves. Our results show how density-dependent individual growth may confer remarkable resilience to marble trout populations in case of major flood events. The resilience to flood events shown by the simulation results can be explained by the increase in size-dependent fecundity as a consequence of the drop in population size after a severe flood, which allows the population to quickly recover to the pre-event conditions. Our results suggest that density-dependent individual growth plays a potentially powerful role in the persistence of freshwater salmonids living in streams subject to recurrent yet unpredictable flood events. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Regular and chaotic cycling in models of ecological genetics   总被引:3,自引:0,他引:3  
A model of density-dependent selection is investigated for the cyclical behavior associated with the analogous nonlinear models of population growth. If the population size regulating mechanism reacts too sharply to perturbations in population size, regular and chaotic limit cycles may result. It is established analytically that the population may converge to fixation or an invariant polymorphic gene frequency while the population size undergoes regular or chaotic oscillations. The possibility of joint limit cycles in both the population size and gene frequency is demonstrated and investigated numerically. Such cycles may occur even though one or both fixation equilibria are locally stable. In the context of equilibrium cycles it is found that overdominance in carrying capacity is not necessary for the maintenance of genetic variation in the population. Furthermore, the genetic system appears able to exert a stabilizing influence on the overall system.  相似文献   

17.
M. A. Steele 《Oecologia》1997,112(1):64-74
 Input of individuals dispersing into open populations can be highly variable, yet the consequences of such variation for subsequent population densities are not well understood. I explored the influence of variable input (”supply”) on subsequent densities of juveniles and adults in open local populations of two temperate reef fishes, the bluebanded goby (Lythrypnus dalli) and the blackeye goby (Coryphopterus nicholsii). Variable recruitment was simulated by stocking a natural range of densities of young fishes on replicate patch reefs. Density and mortality of the stocked cohorts were followed over time, until the fishes reached maturity. Over the first day of the experiments, mortality of both species was significantly density-dependent; however, there was still a very strong relationship between density on day 1 and density on day 0 (i.e., simulated recruitment was still an excellent predictor of population density). At this point in the study, the main effects of density-dependent mortality were to reduce mean densities and variation about the mean. Over the period from the start of the experiments until the time when maturity was reached by each species (about 1 and 3 months for Lythrypnus and Coryphopterus, respectively), mortality was strongly density-dependent. Such strong density-dependent mortality virtually eliminated any linear relationship between adult density and ”recruit” density. However, for both species, the relationship between these two variables was well fit by an asymptotic curve, with the asymptotic density of adults equal to c. 3/m2 for Coryphopterus, and c. 10/m2 for Lythrypnus. Natural recruitment (via settlement of larvae) to the reefs over the period of the study (9 months) was above the asymptotic densities of adults for the two species, even though the study did not encompass the periods of peak annual recruitment of either species. This suggests that adult populations of these two gobies may often be limited, and regulated, by post-settlement processes, rather than by input of settlers. Other studies have shown that mortality of the two species is density-independent, or only weakly density-dependent, on reefs from which predators have been excluded. Hence, it appears that predators cause density-dependent mortality in these fishes. Received: 26 November 1996 / Accepted: 5 April 1997  相似文献   

18.
Studies of cyclic microtine populations (voles and lemmings) have suggested a relationship between the previous year's population density and the subsequent timing of the onset of reproduction by overwintered breeding females. No studies have explored the importance of this relationship in the generation of population cycles. Here we mathematically examine the implications of variation in reproductive season length caused by delayed density-dependent changes in its start date. We demonstrate that when reproductive season length is a function of past population densities, it is possible to get realistic population cycles without invoking any changes in birth rates or survival. When parameterized for field voles (Microtus agrestis) in Kielder Forest (northern England), our most realistic model predicts population cycles of similar periodicity to the Kielder populations. Our study highlights the potential importance of density-dependent reproductive timing in microtine population cycles and calls for investigations into the mechanism(s) underlying this phenomenon.  相似文献   

19.
Understanding factors shaping the spatial distribution of animals is crucial for the conservation and management of wildlife species. However, few studies have investigated density-dependent habitat selection in wild populations in non-equilibrium conditions and at varying spatial scales. Here, we investigated density-dependent habitat selection at varying spatial scales in an increasing white stork Ciconia ciconia population using a long term data set in western France. During a 16-year study period, the breeding population density increased from 0.66 nests per 100 km2 to 6.6 nests per 100 km2. At the beginning of the colonisation of the area settlement probability of storks was mainly positively affected by grasslands located near wetlands. Areas with intensive or moderately intensive agriculture were extremely unlikely to be occupied by breeding birds. However, selection for the initially preferred habitats faded as stork density increased although the proportions of habitat types remained unchanged. At the same time selection for initially less favoured habitats had increased. Moreover, we found that the spatial scale of selection for each foraging habitat variable was consistent over time. Our results suggest that snapshot analyses of resource selection in populations at high density may be misleading for population conservation or management. In contrast, a longitudinal approach to resource selection can be a valuable tool for understanding resource limitation.  相似文献   

20.
Syneilesis palmata reproduces by both seeds and vegetative propagules (short rhizomes). The latter result in the production of new plants that are larger in size and hence have a higher survival probability and a higher growth rate than seeds. A previous study predicted that the optimal reproductive strategy, in terms of maximizing population growth rate (a fitness measure under no density regulations), was pure vegetative reproduction. However, high resource investment to vegetative propagules can cause local crowding resulting in reduced demographic performances of the plants, because the vegetative propagules of Syneilesis are produced close to one another. We examined, in this situation, the impact of allocating a certain proportion of reproductive resource to seeds with relatively greater capacity for dispersal. We simulated dynamics of hypothetical Syneilesis populations with various reproductive resource allocation balances (from pure seed to pure vegetative reproduction), using a density-dependent matrix model. In the model, it was assumed that plants from vegetative propagules experienced density-dependent reduction in their survival probabilities, but this was not the case for plants originating from seeds. Each allocation strategy was evaluated based on an equilibrium population density, a fitness measure under density-dependent regulations. The optimal reproductive strategy predicted was pure vegetative reproduction. Unrealistic conditions were required for seed reproduction to be favoured, such as the production of seeds one hundred times the normal number per unit resource investment. However, the conditions were fairly relaxed compared with those required in the model where no density effects were incorporated. This indicates that escape from local crowding is likely to be one of the roles of seed production in Syneilesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号