首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phosphates of all-Z- and 3-demethyl-tri-trans, di-cis-hexaprenols have been prepared and studied as substrates for enzymes of the Salmonella anatum O-specific polysaccharide biosynthesis. Methyl group in alpha-isoprenic unit proved to be essential for the enzyme-substrate interaction, whereas the presence of E-isoprenic units near the omega-end of the polyprenol is not significant.  相似文献   

3.
4.
Abstract We identify a function-controlling O antigen chain length for a plasmid-borne gene, cld pHS-2 harboured by Flexneri strains of Escherichia coli known to cause reactive arthritis. The predicted amino acid sequence of the gene product is very similar to those of other cld genes and that of fepE , thought to be part of the enterobactin iron uptake system of E. coli . The predicted proteins are compared with rfb -associated chain length determinants as a family of related genes  相似文献   

5.
It is shown that Shigella flexneri maintains genetic control over the modal chain length of the O-antigen polysaccharide chains of its lipopolysaccharide (LPS) molecules because such a distribution is required for virulence. The effect of altering O-antigen chain length on S. flexneri virulence was investigated by inserting a kanamycin (Km)-resistance cassette into the rol gene (controlling the modal O-antigen chain length distribution), and into the rfbD gene, whose product is needed for synthesis of dTDP-rhamnose (the precursor of rhamnose in the O-antigen). The mutations had the expected effect on LPS structure. The rol ::Km mutation was impaired in the ability to elicit keratoconjunctivitis, as determined by the Serény test. The rol ::Km and rfbD ::Km mutations prevented plaque formation on HeLa cells, but neither mutation affected the ability of S. flexneri to invade and replicate in HeLa cells. Microscopy of bacteria-infected HeLa cells stained with fluorescein isothiocyanate (FITC)-phalloidin demonstrated that both the rol ::Km and rfbD ::Km mutants were defective in F-actin tail formation: the latter mutant showed distorted F-actin tails. Plasma-membrane protrusions were occasionally observed. Investigation of the location of IcsA (required for F-actin tail formation) on the cell surface by immunofluorescence and immunogold electron microscopy showed that while most rol mutant bacteria produced little or no cell-surface IcsA, 10% resembled the parental bacterial cell (which had IcsA at one cell pole; the rfbD mutant had IcsA located over its entire cell surface although it was more concentrated at one end of the cell). That the O-antigen chains of the rol ::Km mutant did not mask the IcsA protein was demonstrated by using the endorhamnosidase activity of Sf6c phage to digest the O-antigen chains, and comparing untreated and Sf6c-treated cells by immunofluorescence with anti-IcsA serum.  相似文献   

6.
Lipopolysaccharide of Salmonella Agona smooth-type cells was obtained from bacteria by a hot phenol-water extraction procedure. Mild acid hydrolysis of lipopolysaccharide, followed by gel filtration, yielded the pure O-polysaccharide. Abequose, rhamnose, mannose, galactose and glucose in the molar ratio 0.8 : 1.0 : 1.0 : 1.1 : 0.5 were detected, and their linkages were established. Sugar configurations were determined by gas chromatography. Two repeating units, namely -->2)-[alpha-Abep-(1-->3)-]-alpha-d-Manp-(1-->4)-alpha-l-Rhap-(1-->3)-alpha-d-Galp-(1-->and -->2)-[alpha-Abep-(1-->3)-]-alpha-d-Manp-(1-->4)-alpha-l-Rhap-(1-->3)-[alpha-d-Glcp-(1-->4)-]-alpha-d-Galp-(1-->, were deduced from nuclear magnetic resonance studies. The effort to separate them was unsuccessful. An immunochemical test performed by means of Western blotting with anti O12 serum demonstrated that glucose was present in the longer lipopolysaccharide chains, at some distance from the core region.  相似文献   

7.
The O-antigen component of the lipopolysaccharide (LPS) represents a population of polysaccharide molecules with nonrandom (modal) chain length distribution. The number of the repeat O units in each individual O-antigen polymer depends on the Wzz chain length regulator, an inner membrane protein belonging to the polysaccharide copolymerase (PCP) family. Different Wzz proteins confer vastly different ranges of modal lengths (4 to >100 repeat units), despite having remarkably conserved structural folds. The molecular mechanism responsible for the selective preference for a certain number of O units is unknown. Guided by the three-dimensional structures of PCPs, we constructed a panel of chimeric molecules containing parts of two closely related Wzz proteins from Salmonella enterica and Shigella flexneri which confer different O-antigen chain length distributions. Analysis of the O-antigen length distribution imparted by each chimera revealed the region spanning amino acids 67 to 95 (region 67 to 95), region 200 to 255, and region 269 to 274 as primarily affecting the length distribution. We also showed that there is no synergy between these regions. In particular, region 269 to 274 also influenced chain length distribution mediated by two distantly related PCPs, WzzB and FepE. Furthermore, from the 3 regions uncovered in this study, region 269 to 274 appeared to be critical for the stability of the oligomeric form of Wzz, as determined by cross-linking experiments. Together, our data suggest that chain length determination depends on regions that likely contribute to stabilize a supramolecular complex.  相似文献   

8.
9.
10.
Transfer of fatty acids from phospholipids to polyprenols, catalysed by the transacylase from rat liver microsomes, was investigated. The specificity of the enzyme for polyprenols of different chain length and different degree of saturation was studied using individual isoprenologues, the preparation of which in highly tritiated form is described. It was found that short-chain polyprenols are better substrates for the enzyme than long-chain polyprenols, and alpha-saturated better than unsaturated or multiply saturated polyprenols. Short-chain, alpha-saturated single isoprenologues were several-fold more active as acyl acceptors than natural dolichol.  相似文献   

11.
Interaction of alpha-D-mannopyranosyl phosphate with diphenyl phosphochloridate gave the trisubstituted pyrophosphate which was converted through the reaction with nucleoside 5'-phosphates into nucleoside 5'-(alpha-D-mannopyranosyl)pyrophosphates. The method was used for preparation of guanosine diphosphate mannose analogs derived from adenine, purine, 2-aminopurine, 2-amino-6-methoxypurine, 2-amino-6-chloropurine, and 2-amino-6-mercaptopurine. These analogs are necessary for study on substrate specificity of mannosyltransferases of Salmonella O-specific polysaccharides biosynthesis.  相似文献   

12.
13.
STM2209 and STM2208 are contiguous loci annotated as putative protein-coding genes in the chromosome of Salmonella enterica. Lack of homologs in related Enterobacteria and low G+C content suggest that S. enterica may have acquired STM2209-STM2208 by horizontal transfer. STM2209 and STM2208 are co-transcribed from a promoter upstream STM2209, and their products are inner (cytoplasmic) membrane proteins. Analysis with the bacterial adenylate cyclase two-hybrid system suggests that STM2209 and STM2208 may interact. Expression of STM2209-STM2208 is subjected to phase variation in wild type Salmonella enterica serovar Typhimurium. Switching frequencies in LB medium are 6.1×10(-5) (OFF→ON) and 3.7×10(-2) (ON→OFF) per cell and generation. Lack of DNA adenine methylation locks STM2209-STM2208 in the ON state, and lack of the LysR-type factor OxyR locks STM2209-STM2208 in the OFF state. OxyR-dependent activation of STM2209-STM2208 expression is independent of the oxidation state of OxyR. Salmonella cultures locked in the ON state show alteration of O-antigen length in the lipopolysaccharide, reduced absorption of bacteriophage P22, impaired resistance to serum, and reduced proliferation in macrophages. Phenotypic heterogeneity generated by STM2209-STM2208 phase variation may thus provide defense against phages. In turn, formation of a subpopulation unable to proliferate in macrophages may restrain Salmonella spread in animal organs, potentially contributing to successful infection.  相似文献   

14.
The surface O-antigen polymers of Gram-negative bacteria exhibit a modal length distribution that depends on dedicated chain length regulator periplasmic proteins (polysaccharide co-polymerases, PCPs) anchored in the inner membrane by two transmembrane helices. In an attempt to determine whether structural changes underlie the O-antigen modal length specification, we have determined the crystal structures of several closely related PCPs, namely two chimeric PCP-1 family members solved at 1.6 and 2.8 Å and a wild-type PCP-1 from Shigella flexneri solved at 2.8 Å. The chimeric proteins form circular octamers, whereas the wild-type WzzB from S. flexneri was found to be an open trimer. We also present the structure of a WzzFepE mutant, which exhibits severe attenuation in its ability to produce very long O-antigen polymers. Our findings suggest that the differences in the modal length distribution depend primarily on the surface-exposed amino acids in specific regions rather than on the differences in the oligomeric state of the PCP protomers.  相似文献   

15.
Summary The rfb gene cluster of Salmonella typhimurium encodes the enzymes required for the biosynthesis of the O-Antigen. A part of it has been cloned in plasmid vectors pBR322 and pUC9 using an adjacent, previously cloned, part of the his operon (Barnes 1981) as a molecular probe for the first clone. A detailed restriction enzyme map of 7.57 kb of rfb DNA is presented and the approximate locations of two of the genes, rfbK and rfbM have been defined.  相似文献   

16.
The rfb region of Shigella flexneri encodes the proteins required to synthesize the O-antigen component of its cell surface lipopolysaccharides (LPS). We have previously reported that a region adjacent to rfb was involved in regulating the length distribution of the O-antigen polysaccharide chains (D. F. Macpherson et al., Mol. Microbiol. 5:1491-1499, 1991). The gene responsible has been identified in Escherichia coli O75 (called rol [R. A. Batchelor et al., J. Bacteriol. 173:5699-5704, 1991]) and in E. coli O111 and Salmonella enterica serovar typhimurium strain LT2 (called cld [D. A. Bastin et al., Mol. Microbiol. 5:2223-2231, 1991]). Through a combination of subcloning, deletion, and transposon insertion analysis, we have identified a gene adjacent to the S. flexneri rfb region which encodes a protein of 36 kDa responsible for the length distribution of O-antigen chains in LPS as seen on silver-stained sodium dodecyl sulfate-polyacrylamide gels. DNA sequence analysis identified an open reading frame (ORF) corresponding to the rol gene. The corresponding protein was almost identical in sequence to the Rol protein of E. coli O75 and was highly homologous to the functionally identical Cld proteins of E. coli O111 and S. enterica serovar typhimurium LT2. These proteins, together with ORF o349 adjacent to rfe, had almost identical hydropathy plots which predict membrane-spanning segments at the amino- and carboxy-terminal ends and a hydrophilic central region. We isolated a number of TnphoA insertions which inactivated the rol gene, and the fusion end points were determined. The PhoA+ Rol::PhoA fusion proteins had PhoA fused within the large hydrophilic central domain of Rol. These proteins were located in the whole-membrane fraction, and extraction with Triton X-100 indicated a cytoplasmic membrane location. This finding was supported by sucrose density gradient fractionation of the whole-cell membranes and of E. coli maxicells expressing L-[35S]methionine-labelled Rol protein. Hence, we interpret these data to indicate that the Rol protein is anchored into the cytoplasmic membrane via its amino- and carboxy-terminal ends but that the majority of the protein is located in the periplasmic space. To confirm that rol is responsible for the effects on O-antigen chain length observed with the cloned rfb genes in E. coli K-12, it was mutated in S. flexneri by insertion of a kanamycin resistance cartridge. The resulting strains produced LPS with O antigens of nonmodal chain length, thereby confirming the function of the rol gene product. We propose a model for the function of Rol protein in which it acts as a type of molecular chaperone to facilitate the interaction of the O-antigen ligase (RfaL) with the O-antigen polymerase (Rfc) and polymerized, acyl carrier lipid-linked, O-antigen chains. Analysis of the DNA sequence of the region identified a number of ORFs corresponding to the well-known gnd and hisIE genes. The rol gene was located immediately downstream of two ORFs with sequence similarity to the gene encoding UDPglucose dehydrogenase (HasB) of Streptococcus pyogenes. The ORFs arise because of a deletion or frameshift mutation within the gene we have termed udg (for UDPglucose dehydrogenase).  相似文献   

17.
The pathogenic bacteria Bordetella parapertussis and Bordetella bronchiseptica express a lipopolysaccharide O antigen containing a polymer of 2,3-diacetamido-2,3-dideoxy-l-galacturonic acid. The O-antigen cluster contains three neighbouring genes that encode proteins belonging to the short-chain dehydrogenase/reductase (SDR) family, wbmF, wbmG and wbmH, and we aimed to elucidate their individual functions. Mutation and complementation implicate each gene in O-antigen expression but, as their putative sugar nucleotide substrates are not currently available, biochemical characterisation of WbmF, WbmG and WbmH is impractical at the present time. SDR family members catalyse a wide range of chemical reactions including oxidation, reduction and epimerisation. Because they typically share low sequence conservation, however, catalytic function cannot be predicted from sequence analysis alone. In this context, structural characterisation of the native proteins, co-crystals and small-molecule soaks enables differentiation of the functions of WbmF, WbmG and WbmH. These proteins exhibit typical SDR architecture and coordinate NAD. In the substrate-binding domain, all three enzymes bind uridyl nucleotides. WbmG contains a typical SDR catalytic TYK triad, which is required for oxidoreductase function, but the active site is devoid of additional acid-base functionality. Similarly, WbmH possesses a TYK triad, but an otherwise feature-poor active site. Consequently, 3,5-epimerase function can probably be ruled out for these enzymes. The WbmF active site contains conserved 3,5-epimerase features, namely, a positionally conserved cysteine (Cys133) and basic side chain (His90 or Asn213), but lacks the serine/threonine component of the SDR triad and therefore may not act as an oxidoreductase. The data suggest a pathway for synthesis of the O-antigen precursor UDP-2,3-diacetamido-2,3-dideoxy-l-galacturonic acid and illustrate the usefulness of structural data in predicting protein function.  相似文献   

18.
19.
The solubilized glycosyltransferases which catalyse the biosynthesis of Salmonella anatum and S. kentucky O-specific polysaccharides were partially purified by HPLC on Superose 12. Two mannosyl transferases from S. kentucky were separated by gel chromatography; these transferases were found useful for chemical-enzymic synthesis of polyprenylpyrophosphate derivatives of trisaccharides Tal-Man-Gal and Man-Tal-Gal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号