首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T D Lamb 《Biophysical journal》1994,67(4):1439-1454
Activation of the G-protein cascade underlying phototransduction has been modeled by simulating the two-dimensional diffusional interactions that occur at the rod disc membrane between the three reacting protein species, which are the activated rhodopsin (R*), the G-protein (G), and the effector protein (E, the phosphodiesterase, PDE). The stochastic simulations confirm the main predictions of a simplified analytical model (Lamb, T. D., and E. N. Pugh, 1992, Journal of Physiology 449:719-758), and extend that treatment to more complicated cases, where there is a finite probability of reaction or a finite time for reaction. The simulations also provide quantitative estimates of the efficiency of coupling from activated G-protein (G*) to activated effector (E*) in terms of the concentrations, lateral diffusion coefficients, and binding rate constants of the participating molecules; the efficiency of coupling from G* to E* is found to be not as high as in the previous simplified analytical theory. The findings can be extended to other G-protein cascades, provided that the physical parameters of those cascades are specified.  相似文献   

2.
A novel combination of experimental data and extensive computational modeling was used to explore probable protein-protein interactions between photoactivated rhodopsin (R*) and experimentally determined R*-bound structures of the C-terminal fragment of alpha-transducin (Gt(alpha)(340-350)) and its analogs. Rather than using one set of loop structures derived from the dark-adapted rhodopsin state, R* was modeled in this study using various energetically feasible sets of intracellular loop (IC loop) conformations proposed previously in another study. The R*-bound conformation of Gt(alpha)(340-350) and several analogs were modeled using experimental transferred nuclear Overhauser effect data derived upon binding R*. Gt(alpha)(340-350) and its analogs were docked to various conformations of the intracellular loops, followed by optimization of side-chain spatial positions in both R* and Gt(alpha)(340-350) to obtain low-energy complexes. Finally, the structures of each complex were subjected to energy minimization using the OPLS/GBSA force field. The resulting residue-residue contacts at the interface between R* and Gt(alpha)(340-350) were validated by comparison with available experimental data, primarily from mutational studies. Computational modeling performed for Gt(alpha)(340-350) and its analogs when bound to R* revealed a consensus of general residue-residue interactions, necessary for efficient complex formation between R* and its Gt(alpha) recognition motif.  相似文献   

3.
In the accompanying article (Schmidt, J.A., and Yguerabide, J. (1989) J. Biol. Chem. 264, 19790-19803), we presented a minimal quantitative kinetic model with one rate-limiting step for the transient response of rod outer segment (ROS) phosphodiesterase (PDE) to stimulating light pulses of low fractional bleach (linear response range) and showed that the model was in excellent quantitative agreement with experimental results. The model characterizes the PDE response in terms of the specific rate constant of the rate-limiting step, kL, the lifetime of photoactivated rhodopsin, tau R, and the lifetime of activated PDE, tau P, but makes no predictions on how these kinetic parameters should depend on the concentrations of the various reactive species involved in the PDE response to light and does not reveal the nature of the rate-limiting step. However, we established by curve fitting experimental data to theoretical expressions from the model that kL increases hyperbolically with [GTP], tau R decreases with [GTP], and tau P is independent of GTP. In this report we present three detailed kinetic models which make specific quantitative predictions on how the kinetic parameters of the minimal model should depend on nucleotide and G protein concentrations and test the models against experimental data. Each model consists of one rate-limiting step. The first detailed model postulates that the rate-limiting step is the dissociation of R*GT into R* and GT (T stands for GTP). The second model postulates that the rate-limiting step is the binding of GTP to R*G, and the third model postulates that the rate-limiting step is the encounter rate of R* and G on the ROS disc membrane. We find that only the first detailed model is consistent with the experimental results as characterized by the minimal model. Using this detailed model we (a) define kL and tau R in terms of more fundamental equilibrium and rate parameters, (b) develop a theory for the systematic evaluation of amplification or gain of the PDE light response from light-stimulated GTP-binding data as well as v(t) versus t graphs, and (c) clarify methods which have been used in the past to evaluate gain experimentally.  相似文献   

4.
A rich variety of mechanisms govern the inactivation of the rod phototransduction cascade. These include rhodopsin phosphorylation and subsequent binding of arrestin; modulation of rhodopsin kinase by S- modulin (recoverin); regulation of G-protein and phosphodiesterase inactivation by GTPase-activating factors; and modulation of guanylyl cyclase by a high-affinity Ca(2+)-binding protein. The dependence of several of the inactivation mechanisms on Ca2+i makes it difficult to assess the contributions of these mechanisms to the recovery kinetics in situ, where Ca2+i is dynamically modulated during the photoresponse. We recorded the circulating currents of salamander rods, the inner segments of which are held in suction electrodes in Ringer's solution. We characterized the response kinetics to flashes under two conditions: when the outer segments are in Ringer's solution, and when they are in low-Ca2+ choline solutions, which we show clamp Ca2+i very near its resting level. At T = 20-22 degrees C, the recovery phases of responses to saturating flashes producing 10(2.5)-10(4.5) photoisomerizations under both conditions are characterized by a dominant time constant, tau c = 2.4 +/- 0.4 s, the value of which is not dependent on the solution bathing the outer segment and therefore not dependent on Ca2+i. We extended a successful model of activation by incorporating into it a first-order inactivation of R*, and a first-order, simultaneous inactivation of G-protein (G*) and phosphodiesterase (PDE*). We demonstrated that the inactivation kinetics of families of responses obtained with Ca2+i clamped to rest are well characterized by this model, having one of the two inactivation time constants (tau r* or tau PDE*) equal to tau c, and the other time constant equal to 0.4 +/- 0.06 s.  相似文献   

5.
We present a quantitative kinetic model for the transient velocity (microM of cGMP hydrolyzed/s) response of retinal rod outer segment (ROS) cGMP phosphodiesterase (v(t) versus t) to a stimulating light pulse in the linear response range. The model gives an excellent fit to experimental v(t) versus t data for ROS suspensions at different concentrations of GTP and GDP and clarifies experimental results which are difficult to understand in the absence of such a model. It contains the minimum number of steps required to fit our experimental data and consists of one rate-limiting step with specific rate kL for the production of active phosphodiesterase (PDE), PDE*, by photoactivated rhodopsin, R*, and deactivation processes for R* and PDE* with lifetimes tau R and tau P, respectively. The experimental graphs of v(t) versus t at each concentration of GTP and GDP are characterized by a fast rise to a peak value, vpeak, followed by a slow decay to zero level. The minimal kinetic model allows us to characterized completely the effects of GTP and GDP, and any other pertinent species, in terms of their effects on the parameters kL, tau R, and tau P. Our kinetic model indicates that for "washed" ROS preparations (a) the risetime of v(t) is determined by tau P which has a value of about 2 s and is insensitive to [GTP]. (b) The decay of v(t) is determined by tau R which decreases with [GTP] and has a value greater than 300 s at low [GTP] and a limiting value of 50 s at high [GTP]. We attribute the greater than 300 s lifetime to the complex R*G (where G is ROS G protein) and the 50-s lifetime to free R*. (c) The rate kL increases hyperbolically with [GTP] with a half-maximal value of 56 microM and kL.max = 22-45 s-1. (d) Peak velocity is given by the expression vpeak alpha kL tau P which is consistent with the dependence of kL on [GTP] and the experimental finding that vpeak varies hyperbolically with [GTP]. The minimal model has also allowed us to (a) develop clear definitions of amplification for the light-triggered enzymatic cascade and (b) clarify experimental methods for measuring gain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
In rod photoreceptor cells, the light response is triggered by an enzymatic cascade that causes cGMP levels to fall: excited rhodopsin (Rho*)----rod G-protein (transducin, Gt)----cGMP-phosphodiesterase (PDE). This results in the closure of plasma membrane channels that are gated by cGMP. PDE activation by Gt occurs when GDP bound to the alpha-subunit of Gt (Gt alpha) is exchanged with free GTP. The interaction of Gt alpha-GTP with the gamma-subunits of PDE releases their inhibitory action and causes cGMP hydrolysis. Inactivation is thought to be caused by subsequent hydrolysis of Gt alpha-GTP by an intrinsic Gt-GTPase activity. Here we report that there are two portions of Gt in frog rod outer segments (ROS) expressing different rates of GTP hydrolysis: 19.5 +/- 3 mmol of Gt/mol of Rho, equivalent to that amount which participates in PDE activation, hydrolyzing GTP at a rate of approximately 0.6 turnover/s ("fast") and the remaining Gt (80.5 +/- 3 mmol/mol Rho) hydrolyzing GTP at a rate of 0.058 +/- 0.009 turnover/s. Fast GTPase activity is abolished in the presence of cGMP. This effect occurs over the physiological range of cGMP concentration changes in ROS, half-saturating at approximately 2 microM and saturating at 5 microM cGMP. cGMP-dependent suppression of GTPase is specific for cGMP; cAMP in millimolar concentration does not affect GTPase, while the poorly hydrolyzable cGMP analogue, 8-bromo-cGMP, mimics the effect. GTPase regulation by cGMP is not affected by Ca2+ over the concentration range 5-500 nM, which spans the physiological changes in cytoplasmic Ca2+ in rod cells. We suggest that the fast cGMP-sensitive GTPase activity is a property of the Gt that activates PDE. In this model, cGMP serves not only as a messenger of excitation but also modulates GTPase activity, thereby mediating negative feedback regulation of the pathway via PDE turnoff: a light-dependent decrease in cGMP accelerates the hydrolysis of GTP bound to Gt, resulting in the rapid inactivation of PDE.  相似文献   

7.
Cones are less light-sensitive than rods. We showed previously in carp that more light (>100-fold) is required in cones than in rods to activate 50% of cGMP phosphodiesterase (PDE). The lower effectiveness of PDE activation in carp cones is due partly to the fact that the activation rate of transducin (Tr) by light-activated visual pigment (R*) is 5-fold lower in carp cones than in rods. In this study, we tried to explain the remaining difference. First, we examined the efficiency of activation of PDE by activated Tr (Tr*). By activating PDE with known concentrations of the active (guanosine 5′-Ο-(γ-thio)triphosphate (GTPγS)-bound) form of Tr*, we found that Tr* activated PDE at a similar efficiency in rods and cones. Next, we examined the contribution of R* and Tr* lifetimes. In a comparison of PDE activation in the presence (with GTP) and absence (with GTPγS) of Tr* inactivation, PDE activation required more light (and was therefore less effective) when Tr* was inactivated in both rod and cone membranes. This is probably because inactivation of Tr* shortened its lifetime, thereby reducing the number of activated PDE molecules. The effect of Tr* inactivation was larger in cones, probably because the lifetime of Tr* is shorter in cones than in rods. The shorter lifetimes of Tr* and R* in cones seem to explain the remaining difference in the effectiveness of PDE activation between rods and cones.  相似文献   

8.
The major peripheral and soluble proteins in frog rod outer segment preparations, and their interactions with photoexcited rhodopsin, have been compared to those in cattle rod outer segments and found to be similar in both systems. In particular the GTP-binding protein (G) has the same subunit composition, the same abundance relative to rhodopsin (1/10) and it undergoes the same light and nucleotide-dependent interactions with rhodopsin in both preparations. Previous work on cattle rod outer segments has shown that photoexcited rhodopsin (R*), in a state identified with metarhodopsin II, associates with the G protein as a first step to the light-activated GDP/GTP exchange on G. The complex R*-G is stable in absence of GTP, but is rapidly dissociated by GTP owing to the GDP/GTP exchange reaction. Low bleaching extents (less than 10% R*) in absence of GTP therefore create predominantly R*-G complexes, whereas bleaching in presence of GTP creates free R*. We report here that, under conditions of complexed R*, two reactions of R* in frog rod outer segments are highly perturbed as compared to free R*: (a) the spectral decay of metarhodopsin II (MII) into later photoproducts, and (b) the phosphorylation of R* by an ATP-dependent protein kinase. a) The spectral measurements have been performed using linear dichroism on oriented frog rod outer segments; this technique allows discrimination between MII and later photoproducts absorbing at the same wavelength. Association of R* with G leads to a strong reduction of the amount of MIII formed and to an acceleration of the decay of MIII. Furthermore, MII is significantly stabilized, in agreement with the hypothesis that MII is the intermediate which binds to G. b) The phosphorylation of R* is strongly inhibited under conditions of R*-G complex formation as compared to free R*. Interferences between reactions at the three sites involved in R* are discussed: the retinal binding site in the hydrophobic core is sensitive to the presence of GTP-binding protein at its binding site on the cytoplasmic surface of R*; the kinase and the GTP-binding protein compete for access to their respective binding sites, both located on the surface of R*. We also observed a slow and nucleotide-dependent light-induced binding of a protein of molecular weight 50 000, which we consider as the equivalent of the 48 000 Mr light-dependent protein previously identified in cattle rod outer segments.  相似文献   

9.
Activation of the photoreceptor G protein transducin (Gt) by opsin, the ligand-free form of rhodopsin, was measured using rod outer segment membranes with densities of opsin and Gt similar to those found in rod cells. When GTPgammaS was used as the activating nucleotide, opsin catalyzed transducin activation with an exponential time course with a rate constant k(act) on the order of 2 x 10(-3)s(-1). Comparison under these conditions to activation by flash-generated metarhodopsin II (MII) revealed that opsin- and R*-catalyzed activation showed similar kinetics when MII was present at a surface density approximately 10(-6) lower than that of opsin. Thus, in contrast to some previous reports, we find that the catalytic potency of opsin is only approximately 10(-6) that of MII. In the presence of residual retinaldehyde-derived species present in membranes treated with hydroxylamine after bleaching, the apparent k(act) observed was much higher than that for opsin, suggesting a possible explanation for previous reports of more efficient activation by opsin. These results are important for considering the possible role of opsin in the diverse phenomena in which it has been suggested to play a key role, such as bleaching desensitization and retinal degeneration induced by continuous light or vitamin A deprivation.  相似文献   

10.
Visual pigment in photoreceptors is activated by light. Activated visual pigment (R*) is believed to be inactivated by phosphorylation of R* with subsequent binding of arrestin. There are two types of photoreceptors, rods and cones, in the vertebrate retina, and they express different subtypes of arrestin, rod and cone type. To understand the difference in the function between rod- and cone-type arrestin, we first identified the subtype of arrestins expressed in rods and cones in carp retina. We found that two rod-type arrestins, rArr1 and rArr2, are co-expressed in a rod and that a cone-type arrestin, cArr1, is expressed in blue- and UV-sensitive cones; the other cone-type arrestin, cArr2, is expressed in red- and green-sensitive cones. We quantified each arrestin subtype and estimated its concentration in the outer segment of a rod or a cone in the dark; they were ∼0.25 mm (rArr1 plus rArr2) in a rod and 0.6–0.8 mm (cArr1 or cArr2) in a cone. The effect of each arrestin was examined. In contrast to previous studies, both rod and cone arrestins suppressed the activation of transducin in the absence of visual pigment phosphorylation, and all of the arrestins examined (rArr1, rArr2, and cArr2) bound transiently to most probably nonphosphorylated R*. One rod arrestin, rArr2, bound firmly to phosphorylated pigment, and the other two, rArr1 and cArr2, once bound to phosphorylated R* but dissociated from it during incubation. Our results suggested a novel mechanism of arrestin effect on the suppression of the R* activity in both rods and cones.  相似文献   

11.
Single-photon responses (SPRs) in vertebrate rods are considerably less variable than expected if isomerized rhodopsin (R*) inactivated in a single, memoryless step, and no other variability-reducing mechanisms were available. We present a new stochastic model, the core of which is the successive ratcheting down of R* activity, and a concomitant increase in the probability of quenching of R* by arrestin (Arr), with each phosphorylation of R* (Gibson, S.K., J.H. Parkes, and P.A. Liebman. 2000. Biochemistry. 39:5738-5749.). We evaluated the model by means of Monte-Carlo simulations of dim-flash responses, and compared the response statistics derived from them with those obtained from empirical dim-flash data (Whitlock, G.G., and T.D. Lamb. 1999. Neuron. 23:337-351.). The model accounts for four quantitative measures of SPR reproducibility. It also reproduces qualitative features of rod responses obtained with altered nucleotide levels, and thus contradicts the conclusion that such responses imply that phosphorylation cannot dominate R* inactivation (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Moreover, the model is able to reproduce the salient qualitative features of SPRs obtained from mouse rods that had been genetically modified with specific pathways of R* inactivation or Ca2+ feedback disabled. We present a theoretical analysis showing that the variability of the area under the SPR estimates the variability of integrated R* activity, and can provide a valid gauge of the number of R* inactivation steps. We show that there is a heretofore unappreciated tradeoff between variability of SPR amplitude and SPR duration that depends critically on the kinetics of inactivation of R* relative to the net kinetics of the downstream reactions in the cascade. Because of this dependence, neither the variability of SPR amplitude nor duration provides a reliable estimate of the underlying variability of integrated R* activity, and cannot be used to estimate the minimum number of R* inactivation steps. We conclude that multiple phosphorylation-dependent decrements in R* activity (with Arr-quench) can confer the observed reproducibility of rod SPRs; there is no compelling need to invoke a long series of non-phosphorylation dependent state changes in R* (as in Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Our analyses, plus data and modeling of others (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.), also argue strongly against either feedback (including Ca2+-feedback) or depletion of any molecular species downstream to R* as the dominant cause of SPR reproducibility.  相似文献   

12.
A rod transmits absorption of a single photon by what appears to be a small reduction in the small number of quanta of neurotransmitter (Q(count)) that it releases within the integration period ( approximately 0.1 s) of a rod bipolar dendrite. Due to the quantal and stochastic nature of release, discrete distributions of Q(count) for darkness versus one isomerization of rhodopsin (R*) overlap. We suggested that release must be regular to narrow these distributions, reduce overlap, reduce the rate of false positives, and increase transmission efficiency (the fraction of R* events that are identified as light). Unsurprisingly, higher quantal release rates (Q(rates)) yield higher efficiencies. Focusing here on the effect of small changes in Q(rate), we find that a slightly higher Q(rate) yields greatly reduced efficiency, due to a necessarily fixed quantal-count threshold. To stabilize efficiency in the face of drift in Q(rate), the dendrite needs to regulate the biochemical realization of its quantal-count threshold with respect to its Q(count). These considerations reveal the mathematical role of calcium-based negative feedback and suggest a helpful role for spontaneous R*. In addition, to stabilize efficiency in the face of drift in degree of regularity, efficiency should be approximately 50%, similar to measurements.  相似文献   

13.
The mechanism of interaction of the G-protein of retinal rods with rhodopsin and with nucleotides has been investigated using two independent techniques, light-scattering and direct binding measurements with labeled nucleotides. Binding of photoexcited rhodopsin (R*) and nucleotides are shown to be antagonist, and three conformations of the G-protein are described, each of which is proposed to be related to a different level of light-scattering, as follows: (a) the "dark" state, stable in the absence of photoexcited rhodopsin, in which the nucleotide site is poorly accessible and has a high affinity (dissociation constants, 0.1 microM for GDP and 0.01 microM for GppNHp); (b) the R*-bound state in which the nucleotide site is rapidly accessible with a lower affinity (dissociation constants, about 20 microM for GDP and GTP; 20-100 microM for GppNHp). Binding of R* to the G-protein therefore enables rapid binding or exchange of the nucleotide; this in turn reduces the affinity of the G-protein for R* (dissociation constants, 0.2 microM for G-protein with GDP bound and 2-10 microM for G-protein with GppNHp bound, compared to 1 nM in absence of bound nucleotide); and (c) the third state, the activator of the phosphodiesterase. In the presence of GTP, an additional irreversible and fast step, which is proposed to be the dissociation of alpha-GTP from beta gamma, is shown to occur; a steady state equilibrium is obtained, and the dissociation constant measured between GTP and this third state of the G-protein in the presence of R* is an apparent constant which depends on the rate of transconformation between the first two states and on the rate of GTP hydrolysis. The minimum value of this apparent dissociation constant for GTP (0.05-0.1 (microM) is obtained at high levels of illumination. Finally, some results (number of nucleotide sites and saturation of the rate of the light-scattering signal) suggest an oligomeric association of the G-protein.  相似文献   

14.
The visual GTP-binding protein, transducin, couples light-activated rhodopsin (R*) with the effector enzyme, cGMP phosphodiesterase in vertebrate photoreceptor cells. The region corresponding to the alpha4-helix and alpha4-beta6 loop of the transducin alpha-subunit (Gtalpha) has been implicated in interactions with the receptor and the effector. Ala-scanning mutagenesis of the alpha4-beta6 region has been carried out to elucidate residues critical for the functions of transducin. The mutational analysis supports the role of the alpha4-beta6 loop in the R*-Gtalpha interface and suggests that the Gtalpha residues Arg310 and Asp311 are involved in the interaction with R*. These residues are likely to contribute to the specificity of the R* recognition. Contrary to the evidence previously obtained with synthetic peptides of Gtalpha, our data indicate that none of the alpha4-beta6 residues directly or significantly participate in the interaction with and activation of phosphodiesterase. However, Ile299, Phe303, and Leu306 form a network of interactions with the alpha3-helix of Gtalpha, which is critical for the ability of Gtalpha to undergo an activational conformational change. Thereby, Ile299, Phe303, and Leu306 play only an indirect role in the effector function of Gtalpha.  相似文献   

15.
W F Drewe  M F Dunn 《Biochemistry》1986,25(9):2494-2501
The pre-steady-state reaction of indole and L-serine with the alpha 2 beta 2 complex of Escherichia coli tryptophan synthase has been investigated under different premixing conditions with rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy for the spectral range 300-550 nm. When alpha 2 beta 2 was mixed with indole and L-serine, the reaction of alpha 2 beta 2 was found to occur in three detectable relaxations (1/tau 1 greater than 1/tau 2 greater than 1/tau 3) with rate constants identical with the three relaxations seen in the partial reaction with L-serine [Drewe, W.F., Jr., & Dunn, M.F. (1985) Biochemistry 24, 3977-3987]. Kinetic isotope effects due to substitution of 2H for the alpha-1H of serine were found to be similar to the effects observed in the reaction with serine only. The observed spectral changes and isotope effects indicate that the aldimine of L-serine and PLP and the first quinoid derived from this external aldimine are transient species that accumulate during tau 1. Conversion of these intermediates to the alpha-aminoacrylate Schiff base during tau 2 and tau 3 limits the rate of formation of the second quinoidal species (lambda max 476 nm) generated via C-C bond formation between indole and the alpha-aminoacrylate intermediate. The pre-steady-state reaction of the alpha 2 beta 2-serine mixture with indole is comprised of four relaxations (1/tau 1* greater than 1/tau 2* greater than 1/tau 3* greater than 1/tau 4*).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Magnetic field-dependent recombination measurements together with magnetic field-dependent triplet lifetimes (Chidsey, E.D., Takiff, L., Goldstein, R.A. and Boxer, S.G. (1985) Proc. Natl. Acad. Sci USA 82, 6850–6854) yield a free energy change ΔG(P+H3P*) = 0.165 eV ±0.008 at 290 K. This does not depend on whether nuclear spin relaxation in the state 3P* is assumed to be fast or slow compared to the lifetime of this state. This value, being (almost) temperature independent, indicates ΔG(P+H3P*) ΔH(P+H3P*) and is consistent with ΔG(1P* − P+H) and ΔH(1P* − 3P*) from previous delayed fluorescence and phosphorescence data, implying ΔG ΔH for all combinations of these states.  相似文献   

17.
Fluorescence lifetime and intensity quenching studies of human plasma apolipoprotein A-I (apo A-I) in aqueous solution and in recombinant lipoprotein complexes with dimyristoylphosphatidylcholine (DMPC) indicate differences in conformational dynamics. In aqueous solution, the bimolecular quenching constants (k*) for lipid-free apo A-I fluorescence quenching by oxygen and acrylamide are 2.4 X 10(9) and 0.38 X 10(9) M-1 s-1, respectively. These values are independent of the oligomeric form of the protein. There is no correlation between the relatively small k* for apo A-I, which reflects rapid, low-amplitude protein fluctuations, and the labile conformational changes of apo A-I folding reactions, like denaturation, which occur on a slower time scale. In recombinant DMPC/apo A-I complexes (100:1 molar ratio) the protein increases in amphiphilic alpha-helical structure as it blankets the lipid matrix. The apparent k* for oxygen quenching of apo A-I fluorescence in the complex is large and increases in a temperature-dependent manner. We have introduced a two-compartment model, which discriminates the source of quencher molecules as aqueous or lipid, to describe oxygen quenching of DMPC/apo A-I fluorescence. The magnitude and temperature dependence of the apparent k* predominantly reflect the partitioning of oxygen between the two phases rather than being a probe of the lipid physical state. Calculations of the helical hydrophobic moment in apo A-I indicate that tryptophan residues 8 and 72 occur at the lipid-protein interface of amphiphilic alpha-helices, whereas the other two tryptophan residues (50, 108) lie on the nonpolar faces of amphiphilic helices.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Weber and noise adaptation in the retina of the toad Bufo marinus   总被引:2,自引:1,他引:1       下载免费PDF全文
Responses to flashes and steps of light were recorded intracellularly from rods and horizontal cells, and extracellularly from ganglion cells, in toad eyecups which were either dark adapted or exposed to various levels of background light. The average background intensities needed to depress the dark-adapted flash sensitivity by half in the three cell types, determined under identical conditions, were 0.9 Rh*s-1 (rods), 0.8 Rh*s-1 (horizontal cells), and 0.17 Rh*s-1 (ganglion cells), where Rh* denotes one isomerization per rod. Thus, there is a range (approximately 0.7 log units) of weak backgrounds where the sensitivity (response amplitude/Rh*) of rods is not significantly affected, but where that of ganglion cells (1/threshold) is substantially reduced, which implies that the gain of the transmission from rods to the ganglion cell output is decreased. In this range, the ganglion cell threshold rises approximately as the square root of background intensity (i.e. in proportion to the quantal noise from the background), while the maintained rate of discharge stays constant. The threshold response of the cell will then signal light deviations (from a mean level) of constant statistical significance. We propose that this type of ganglion cell desensitization under dim backgrounds is due to a post-receptoral gain control driven by quantal fluctuations, and term it noise adaptation in contrast to the Weber adaptation (desensitization proportional to the mean background intensity) of rods, horizontal cells, and ganglion cells at higher background intensities.  相似文献   

19.
T D Ting  Y K Ho 《Biochemistry》1991,30(37):8996-9007
During the visual transduction process in rod photoreceptor cells, transducin (T) mediates the flow of information from photoexcited rhodopsin (R*) to the cGMP phosphodiesterase (PDE) via a cycle of GTP binding and hydrolysis. The pre-steady-state kinetics of GTP hydrolysis by T was studied by rapid quenching and filtration techniques in a reconstituted system containing purified R* and T. Kinetic analyses have shown that the turnover of T-bound GTP can be dissected into four partial reactions: (1) the R*-catalyzed GTP binding via a GDP/GTP exchange reaction, (2) the on-site hydrolysis of bound GTP, which leads to the formation of a T-GDP.Pi complex, (3) the release of the tightly bound inorganic phosphate (Pi) from T-GDP.Pi, and (4) the recycling of T-GDP. The R*-catalyzed GTP binding was estimated to occur in less than 1 s. In rapid acid quenching experiments, the rate of Pi formation due to GTP hydrolysis exhibited biphasic characteristics. An initial burst of Pi formation occurred between 1 and 4 s, which was followed by a slow steady-state rate. Increasing T concentration yielded a proportional increase in the burst and steady-state rate. The addition of Gpp(NH)p decreased both parameters. D2O decreased the rise of the initial burst with a kinetic isotope effect of approximately 1.7 but has no effect on the steady-state rate of Pi formation. These results indicate that the burst represents the fast hydrolysis of GTP at the binding site of T, which results in the accumulation of T-GDP.Pi complexes. The steady-state rate represents the slow release of Pi. This finding was further supported by rapid filtration experiments that monitored the formation of free Pi in solution. An initial lag time in the formation of free Pi was observed before a steady-state rate was established, indicating that the initially formed Pi was tightly bound to T. Finally, the release of GDP from T-GDP.Pi was not detected. This suggests that another cycle of GTP exchange catalyzed by R* should occur before the release of bound GDP. The rate of Pi release from T-GDP.Pi was measured under single-turnover conditions and had a half life of approximately 20 s, which was identical with the rate of deactivation of the PDE due to GTP hydrolysis by T.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Morizumi T  Imai H  Shichida Y 《Biochemistry》2005,44(29):9936-9943
Rhodopsin is a photoreceptive protein that is present in rod photoreceptor cells, inducing a GDP-GTP exchange reaction on the retinal G-protein transducin (Gt) upon light absorption. This exchange reaction proceeds through at least three steps, which include the binding of photoactivated rhodopsin to GDP-bound Gt, the dissociation of GDP from the rhodopsin-Gt complex, and the binding of GTP to the nucleotide-unbound Gt. These steps have been thought to occur after the formation of the rhodopsin intermediate, meta-II; however, the extra formation of meta-II, which reflects the formation of a complex with Gt, was inhibited in the presence of excess GDP. Here, we use a newly developed CCD spectrophotometer to show that a meta-II precursor, meta-Ib, which has an absorption maximum at visible region, can bind to Gt in its GDP-bound form in urea-washed bovine rod outer segment membranes. The affinity of meta-Ib for GDP-bound Gt is about two times less than that of meta-II for GDP-unbound Gt, indicating that the extra formation of meta-II is observed at equilibrium even in the presence of the meta-Ib-Gt complex. This is the first identification of a complex that includes the GDP-bound form of G protein. Our results strongly suggest that the protein conformational change of the rhodopsin intermediate after binding to Gt is important for the induction of the nucleotide release from the alpha-subunit of Gt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号