首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of cytochalasin B, vinblastine and temperature on particle movement in the plasma membrane of several 3T3 mouse fibroblast lines were investigated. Preincubation of normal 3T3 cells for 24 h in 5–10 μg/ml cytochalasin B had no effect on the mean square relative displacement of marker particles in the membrane (motion constant), but preincubation for 4 h in 40 μg/ml vinblastine reduced the value of this constant by 70%. A 10 °C decrease in temperature decreased the motion constant in normal cells (Q10 = 4) more than in virus-transformed 3T3 cells (Q10 = 1.8). Interpreting the motion constant of the particles as an expression of the viscosity of the membrane material, values of 3 poise for normal 3T3 cells and 6 poise for the transformed cells are obtained for 37 °C and pH = 7.4.A method is suggested to quantitate aggregation of particles on the surface of cells. When this method is applied to gold particles on 3T3 cells, disaggregation of particles is seen to behave as an unordered process, whereas aggregation appears to express cellular control. This consideration and the effect of vinblastine indicate that the interpretation of particle movement as Brownian movement in a viscous membrane material does not cover all phenomena observed.The membrane movement of the flat revertant SVF1 101 [1] was investigated. This cell line occupies an intermediary position between normal 3T3 mouse fibroblasts and the polyoma and SV40 transformed 3T3 cell lines as judged by growth properties. Its membrane movement was found to occupy an intermediary position between the membrane movements of these cell lines, too.  相似文献   

2.
The photosynthetic capacity of Myriophyllum salsugineum A.E. Orchard was measured, using plants collected from Lake Wendouree, Ballarat, Victoria and grown subsequently in a glasshouse pond at Griffith, New South Wales. At pH 7.00, under conditions of constant total alkalinity of 1.0 meq dm−3 and saturating photon irradiance, the temperature optimum was found to be 30–35°C with rates of 140 μmol mg−1 chlorophyll a h−1 for oxygen production and 149 μmol mg−1 chlorophyll a h−1 for consumption of CO2. These rates are generally higher than those measured by other workers for the noxious Eurasian water milfoil, Myriophyllum spicatum L., of which Myriophyllum salsugineum is a close relative. The light-compensation point and the photon irradiance required to saturate photosynthetic oxygen production were exponentially dependent on water temperature. Over the temperature range 15–35°C the light-compensation point increased from 2.4 to 16.9 μmol (PAR) m−2 s−1 for oxygen production while saturation photon irradiance increased from 41.5 to 138 μmol (PAR) m−2 s−1 for oxygen production and from 42.0 to 174 μmol (PAR) m−2 s−1 for CO2 consumption. Respiration rates increased from 27.1 to 112.3 μmol (oxygen consumed) g−1 dry weight h−1 as temperature was increased from 15 to 35°C. The optimum temperature for productivity is 30°C.  相似文献   

3.
Comparison of pinocytosis and phagocytosis in Acanthamoeba castellanii   总被引:3,自引:0,他引:3  
Acanthamoeba, with high rates of phagocytosis and pinocytosis of the non-concentrative type, offers favorable experimental material for investigation of similarities and possible differences in these two modes of uptake. Phagocytosis was measured by the rate of uptake of latex beads and pinocytosis by the rate of uptake of radioactive inulin and albumin. The effects of the metabolic inhibitors NaN3, NaCN, NaF, iodoacetate, 2,4-dinitrophenol and cold were found to be identical on both forms of endocytosis. Both endocytic processes were suppressed by inhibitors of aerobic metabolism and low temperature and were not appreciably affected by inhibitors of glycolysis. The cells recovered capacity to endocytose after exposure to all these compounds except 2,4-dinitrophenol, which was irreversibly toxic. Endocytosis and O2 consumption were measured as a function of temperature. Below 5 °C both phagocytosis and pinocytosis ceased; between 9 and 15 °C uptake was less than 10% that at 29 °C. From 16 to 29 °C uptake was a linear function of temperature for both pinocytosis and phagocytosis. Curves for O2 consumption and endocytosis both showed breaks at about 16 °C. Concanavalin A (ConA) inhibited both types of endocytosis more than 50% at concentrations as low as 5 μg/2 × 105 cells/ml. Pinocytosis and phagocytosis were also measured simultaneously in the same cells. Increasing the rate of phagocytosis suppressed pinocytosis, but the combined volume of the two forms of uptake was essentially constant. In contrast, the estimated combined surface intake varied over a two-fold range. These data show no differences between phagocytosis and pinocytosis of the non-concentrative type, and suggest that control of the rate of endocytosis is determined by the volume of an internal compartment. The volume of this compartment, estimated by measuring the volume of latex beads that “saturate” the phagocytic mechanism, amounted to about 500 μm3/cell or roughly 15% of the cell volume.  相似文献   

4.
A sensitive and accurate assay was developed and validated to determine BNP7787 (dimesna), a new protector against cisplatin-induced toxicities, and its metabolite mesna in plasma and urine of patients. Both analytes were measured as mesna in deproteinized plasma or in urine diluted with mobile phase using high-performance liquid chromatography with an electrochemical detector provided with a wall-jet gold electrode. The assays for BNP7787 and mesna in deproteinized plasma were linear over the range of 1.6–500 μM and 0.63–320 μM, respectively. In plasma, the mean recovery of BNP7787 over the whole concentration range was 100.6% and of mesna 94.6%. The lower limits of quantitation (LLQs) of BNP7787 and mesna in deproteinized plasma were 1.6 μM and 0.63 μM, respectively. For both compounds the within- and between-day accuracy and precision of the assay was better than 12%. The assays for BNP7787 and mesna in urine were linear over the range of 0.8–1200 μM and 0.63–250 μM, respectively. In urine, the mean recovery of BNP7787 over the whole concentration range was 94.1% and of mesna 93.1%. The LLQ of BNP7787 in urine was 0.8 μM and of mesna 1.6 μM. The within- and between-day accuracy and precision of the assay for BNP7787 and mesna was lower than 15%. The stability of mesna in urine increased with an increasing concentration of mesna, lower temperature and addition of EDTA (1 g/l) and hydrochloric acid (0.2 M). BNP7787 in urine was stable for at least 24 h at temperatures in the range of −20°C up to 37°C and independent of the concentration. The developed assays are currently applied for samples of patients with solid tumors participating in a phase I trial of BNP7787 in combination with cisplatin.  相似文献   

5.
Growth and dark respiration rates of the marine diatom Leptocylindrus danicus Cleve were measured in axenic batch culture under 49 combinations of temperature (5, 10, 15, 20°C), daylength(15:9, 12:12, 9:15 LD), and irradiance (at least four irradiances per daylength). Cell division rates exhibited a temperature-dependent daylength effect. Optimal temperatures occurred between 15 and 20°C. Both the initial slope () and the growth rate at light saturation (μmax) were strongly influenced by temperature; increased five-fold and μmax by an order of magnitude between 5 and 20°C. The compensation irradiance (Ic) was independent of temperature. μmax was 2.7 div day−1 at 20°C, 2.6 at 15°C, 1.1 at 10°C, and 0.3 at 5 °C. Cells grown under 15:9 and 12:12 LD exhibited similar growth-light curves at 20°C and at 15°C. μmax of cells grown under 9:15 LD at these temperatures were substantially lower than μmax under longer daylengths. Growth at 10 and 5°C was independent of daylength.

Dark respiration rates were a linear function of cell division rates at 10, 15, and 20°C, and support the concept that growth rate is dependent on dark respiration rate. These relationships were not influenced by daylength. A detectable relationship between dark respiration and growth at 5°C was not observed.

Photosynthesis and excretion showed temperature-dependent curvilinear relationships with growth rate, reflecting the lower saturation irradiance for growth compared to light saturation of photosynthesis and excretion. The relationship between Chl a-specific photosynthesis and growth was controlled by the C:Chl a ratio, which showed a positive correlation with cell division rate. At 15 and 20°C, light saturation of growth was associated with C:Chl a ratios of 40 to 60; at 5 and 10°C, cells growing at μmax contained C:Chl a in ratios of 80 to 110.  相似文献   


6.
The growth of the freshwater microalga Scenedesmus obliquus was studied at 30°C in a mineral culture medium with phosphorus concentrations of between 0 and 372 μ . The values for the specific growth rates, between and , fitted a semistructured substrate-limitation model with μm1 = 0·0466 h−1, μm2 = 0·0256 h−1 and . The specific uptake rate of phosphorus reached a maximum value of qSm1 = 658·01 × 10−4 μmol P mg−1 biomass h−1.  相似文献   

7.
Binding of purified monoclonal antibody (moAB) IgM NMS-1 to suspended initially spherical living human PMNLs is not associated with the generation of chemiluminescence but was found to enhance the chemiluminescence response to the N-formyl chemotactic peptide FNLPNTL.

We investigated quantitatively the kinetics of oxygen metabolite generation by PMNLs stimulated with FNLPNTL ± moAB NMS-1 using luminol-dependent chemiluminescence as a very sensitive detection system. Chemiluminescence detection allowed the analysis of the time sequence of onset and development of reactive oxygen metabolites following stimulation of PMNLs by FNLPNTL in the presence of moAB NMS-1. The increase of response of PMNLs stimulated with FNLPNTL in the presence of moAB NMS-1 depended on the concentration of the antibody and the sequence of stimulus addition.

Stimulation of human PMNLs by 10nM FNLPNTL induced a rapid burst of chemiluminescence which peaked ∼5min after stimulus addition. The subsequent addition of moAB NMS-1 (≥2μg/ml DPBS(+)—0.1% HSA, 37°C) to FNLPNTL-stimulated PMNLs—after the FNLPNTL-mediated response had already decayed (16-18 min) - without delay induced a second burst of oxygen metabolite generation. The magnitude of this second peak of activation was dose-dependent.

Treatment of PMNLs with moAB NMS-1 (≥ 1μg/ml DPBS(+)—0.1% HSA, 3 min, 37°C)—prior to FNLPNTL (10nM) stimulation - increased rate and magnitude of the FNLPNTL-mediated response. This response is biphasic with the first peak at the FNLPNTL position and a second, higher peak ∼16 min after FNLPNTL addition. The magnitude of response was dose-dependent. The latency (lag time) of the respone was not changed compared to controls which received no moAB NMS-1 treatment.

The observed moAB NMS-1 dependent increase in FNLPNTL-mediated chemiluminescence is transient (5-60 min), persistent activation was not detected.  相似文献   

8.
The initial rate of thymidine-3H incorporation into the acid-soluble pool by cultured Novikoff rat hepatoma cells was investigated as a function of the thymidine concentration in the medium. Below, but not above 2 µM, thymidine incorporation followed normal Michaelis-Menten kinetics at 22°, 27°, 32°, and 37°C with an apparent Km of 0.5 µM, and the Vmax values increased with an average Q10 of 1.8 with an increase in temperature. The intracellular acid-soluble 3H was associated solely with thymine nucleotides (mainly deoxythymidine triphosphate [dTTP]). Between 2 and 200 µM, on the other hand, the initial rate of thymidine incorporation increased linearly with an increase in thymidine concentration in the medium and was about the same at all four temperatures. Pretreatment of the cells with 40 or 100 µM p-chloromercuribenzoate for 15 min or heat-shock (49.5°C, 5 min) markedly reduced the saturable component of uptake without affecting the unsaturable component or the phosphorylation of thymidine. The effect of p-chloromercuribenzoate was readily reversed by incubating the cells in the presence of dithiothreitol. Persantin and uridine competitively inhibited thymidine incorporation into the acid-soluble pool without inhibiting thymidine phosphorylation. At concentrations below 2 µM, thymidine incorporation into DNA also followed normal Michaelis-Menten kinetics and was inhibited in an apparently competitive manner by Persantin and uridine. The apparent Km and Ki values were about the same as those for thymidine incorporation into the nucleotide pool. The over-all results indicate that uptake is the rate-limiting step in the incorporation of thymidine into the nucleotide pool as well as into DNA. The cells possess an excess of thymidine kinase, and thymidine is phosphorylated as rapidly as it enters the cells and is thereby trapped. At low concentrations, thymidine is taken up mainly by a transport reaction, whereas at concentrations above 2 µM simple diffusion becomes the principal mode of uptake. Evidence is presented that indicates that uridine and thymidine are transported by different systems. Upon inhibition of DNA synthesis, net thymidine incorporation into the acid-soluble pool ceased rapidly. Results from pulse-chase experiments indicate that a rapid turnover of dTTP to thymidine may be involved in limiting the level of thymine nucleotides in the cell.  相似文献   

9.
Activation of neutrophils results in a one-electron reduction of oxygen to produce the superoxide anion and other oxygen-derived, microbicidal species. Evidence from many kinetic studies of oxygen-derived radicals generated by stimulated neutrophils in vitro shows that radical production is optimal at 37°C but only lasts several minutes and then rapidly subsides. These findings support the widely held perception that the neutrophil's “oxidative burst” is a transitory event that peaks within minutes of stimulation and ends shortly thereafter. However, while some studies have shown that under controlled conditions stimulated neutrophils can generate superoxide continuously for several hours, others have observed that the superoxide formation by neutrophils stimulated in buffer at 37°C does not persist. To reconcile the conflicting findings and to better understand neutrophil function, we have reinvestigated the effect of temperature on the kinetics of radical generation by PMA-stimulated cells. Electron paramagnetic resonance spectroscopy coupled with spin-trapping and SOD-inhibitable ferricytochrome c reduction were used to monitor superoxide production by neutrophils stimulated at either 25°C or 37°C in RPMI 1640 medium or in Hank's balanced salt solution. When oxygen was supplied continuously, neutrophils stimulated at 25°Cin buffer or in medium generated superoxide for several hours but at 37°C. particularly in HBSS, O2-formation strikingly and rapidly decreased. This cessation of superoxide generation was reversible by lowering the temperature back to 25°C. These data imply that in vivo neutrophils may be capable of generating oxy-radicals for prolonged periods. In part, our results may also explain the often observed termination of neutrophil-derived radical formation in vitro and help to dispel the perception that neutrophil-derived oxy-radical production is an ephemeral phenomenon.  相似文献   

10.
The ability of synaptosomes, prepared from striata, to take up 3H-dopamine declined rapidly during incubation at 37°C, in an oxygenated Krebs-Ringer medium with 0.1 mM ascorbic acid. Ascorbic acid was responsible for this decrease. Its effectiveness after a 60 min incubation was concentration dependent from 1 μM and virtually complete for 0.1 mM. Furthermore, a decrease of synaptosomal membrane fluidity was revealed by measurements of fluorescence polarization using 1,6-diphenyl-1,3,5-hexatriene. This decrease was potentiated by Fe2+ ions (1 μM). In contrast, it was prevented by the Fe2+ ion chelator, desferrioxamine (0.1 mM), by the Ginkgo biloba extract EGb 761 [2-16 μg/ml], as well as by the flavonoid quercetin (0.1 μM). This preventive effect was shared by trolox C (from 0.1 mM). It is concluded that peroxidation of neuronal membrane lipids induced by ascorbic acid/Fe2+ is associated with a decrease in membrane fluidity which, in turn, reduces the ability of the dopamine transporter to take up dopamine.  相似文献   

11.
The aim of the study was to investigate whether there is transmembrane transport of intact glutathione ([3H]-GSH, 0.1 μCi) in rat and human type II pneumocytes (T2P), and if this transport might be dependent on the redox state of the extracellular fluid. The T2P were pretreated with acivicin (250 μM) to inhibit γ-glutamyl-transferase activity and with L-buthionine-[SR]-sulfoximine (1 mM) to inhibit intracellular GSH synthesis. After 48 h in culture, initial GSH influx rate was 0.70 ± 0.20 nmol/min/mg protein (37°C) and 0.35 ± 0.04 nmol/min/mg protein (4°C) during the first 5 min in rat T2P. In human T2P, the initial GSH influx rate was 0.36 ± 0.30 nmol/min/mg protein (37°C) and 0.32 ± 0.06 nmol/min/mg protein (4°C) during the first 10 min. Thereafter no further influx was found. The influx of 1 mM GSH in freshly isolated rat and human T2P in suspension was 2.3 ± 0.3 and 1.2 ± 0.3 nmol/mg protein after 15 min at 37°C, and 2.8 ± 0.2 and 1.0 ± 0.3 nmol/mg protein at 4°C, respectively. When GSH influx was studied at different concentrations between 0 and 40 mM, a linear increase without saturation or difference between 37°C and 4°C was found. Preexposure to ouabain had no effect on GSH influx. Efflux of GSH was stimulated and influx inhibited by preexposure of the cells to reduced thiols, while disulphides inhibited efflux and favoured inward uptake. Thus, in human and rat T2P a GSH-carrier exists which operates as an effluxer. At GSH concentrations in the physiological range no uptake is seen, but some uptake can be observed at GSH concentrations above normal physiological levels. The uptake appears to be energy-independent and non-saturable. Efflux of GSH is stimulated and influx inhibited by reduced thiols, while disulphides inhibit the efflux and favour inward uptake. GSH uptake in T2P thus may depend on concentration gradients and driving forces, such as the redox state of the extracellular fluid.  相似文献   

12.
Lectin-mediated interaction of erythrocytes and macrophages was brought about in two steps. Step I involved macrophage treatment with lectin, and step II is the incubation of lectin-treated macrophages with mouse erythrocytes. The extent and nature of lectin-mediated macrophage erythrocyte interaction was studied using concanavalin A (ConA), wheat germ (WGA), soybean (SBA) and waxbean (WBA) agglutinins. The parameters affecting the interaction were studied in detail with the first two lectins.Under comparable conditions of lectin interaction with macrophages (step I), WGA mediates rosette formation involving interaction with several times the number of erythrocytes than those interacting with ConA-treated macrophages. The interaction mediated by WGA reaches, at 37 °C, a saturation value after 30 min of step II, whereas that mediated by ConA is still linear and exhibits half the amount of attached erythrocytes at 60 min. ConA-mediated attachment of erythrocytes is highly temperature-dependent being at 37 °C twice that observed at 24 °C. The temperature dependence of attachment is not affected by changes of either ConA concentration (5–40 μg/ml) or the temperature in step I. An optimum is observed, however, when the temperature of incubation in step I ranges between 14–18 °C. WGA-mediated attachment of erythrocytes is markedly less temperature-sensitive, exhibiting 70% of optimal attachment already at 8 °C. Only when the attachment phase follows incubation with a low concentration of WGA (2 μg/ml) high temperature sensitivity is exhibited. At 37 °C, however, the number of attached erythrocytes is the same for macrophages treated with WGA at concentrations of 2, 5, 10 and 40 μg/ml.ConA-mediated erythrocyte-macrophage interaction does not lead to erythrophagocytosis. When mediated by WGA, the attachment step is followed by a temperature-dependent ingestion step, i.e. 10% and 50% of the erythrocytes that attach to macrophages during the 60 min incubation at 24 °C and 37 °C, respectively, are ingested. There is a lag period of 10–20 min between attachment and ingestion implicating involvement of additional cellular processes preceding engulfment. Electron microscope images of areas of interaction of attached erythrocytes with macrophages indicate a significantly tighter binding (a thinner gap at membrane-membrane apposition areas) in the case of WGA-mediated rosette formation as compared with that established in ConA-mediated rosettes. Attachment via WGA is followed by a rapid change in the relative position of the attached erythrocytes on the macrophage, from a primary attachment at the distal peripheral regions of the cell, to a perinuclear position. In contrast, erythrocytes attached via ConA remain at the primary attachment point (at 37 °C) for extended periods. This differential behaviour does not stem from effects of ConA on macrophages, since when yeast cells were attached to ConA treated macrophages, the yeast cells showed the same movement as that exhibited by erythrocyte when attached via WGA.The different interaction patterns of erythrocytes with macrophages coated with ConA and WGA can be fitted into the following working hypothesis: the number of WGA-binding sites on the plasma membrane of macrophages is at least three times that of ConA-binding sites. Stable cell-cell interactions involve multibridge formation at the contact area of the two cells and this involves a delicate balance between number of lectin-receptor conjugates and their aggregation state within the membrane phase. A certain amount of clustering is a prerequisite for attachment, while a high degree of clustering reduces the chance of fruitful interactions. The engulfment step depends on the ability of membrane areas adjacent to primary contact area to establish additional stable bridges in the entire circumference of the attached cell. ConA-receptor conjugates appear to be less abundant and more aggregated within the membrane plane, preventing the completion of fruitful circumferential interaction of the adjacent membrane. WGA-receptor conjugates, being more abundant and apparently less aggregated are available at membrane areas needed for cell enclosure and provide the additional bridging without which engulfment does not take place. Change in relative position of attached erythrocytes seems to be a step in the manifold events occurring from attachment to ingestion.  相似文献   

13.
Starch from AC Hill oat grains (Avena nuda) was isolated and some of the characteristics determined. The yield of starch was 23·4% on a whole grain basis. The shape of the granule was polyhedral to irregular, with granules 6–10 μm in diameter. Lipids were extracted by acid hydrolysis and by selective solvent extraction with chloroform-methanol 2:1 v/v (CM) at ambient temperature, followed by n-propanol-water 3:1 v/v (PW) at 90–100°C. The acid hydrolyzed extracts which represented the total starch lipids (TSL) was 1·13%. The free lipids in the CM extract (1% TSL) was 6·2%, whereas the free and bound lipids in the PW extracts was 93.0%. Neutral lipids formed the major lipid class in the CM and PW extracts. The monoacyl lipid content in both CM and PW extracts was 61·0%. The total amylose content was 19·4%, of which 13·9% was complexed by native lipids. X-ray diffraction was of the ‘A’ type. Oat starch differed from wheat starch in showing a higher swelling factor, decreased amylose leaching, coleaching of a branched starch component and amylose during the pasting process, higher peak viscosity and set-back, low gel rigidity, greater susceptibility towards acid hydrolysis, greater resistance to -amylase action and a higher freeze-thaw stability. Furthermore, in comparison to wheat starch, the amylose chains of oat starch appear to be more loosely arranged in the amorphous regions, whereas in crystalline regions, oat starch chains are more compactly packed. Lipid removal from oat and wheat starches decreased their swelling factor, peak viscosity, set-back, gelatinization temperatures, freeze-thaw stability and paste clarity (at pH > 4·0), and increased their thermal stability, amylose leaching, enthalpy of gelatinization, susceptibility towards -amylase and paste clarity (at pH < 4·0). The results also showed that the properties of AC Hill oat starch is not representative of oat starch in general.  相似文献   

14.
Synthesis of colominic acid in Escherichia coli K-235 is strictly regulated by temperature. Evidence for the role of cytidine 5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) synthetase in this regulation was obtained by measuring its level in E. coli grown at 20 and 37°C. No activity was found in E. coli grown at 20°C. CMP-Neu5Ac started to be quickly synthesized when bacteria grown at 20°C were transferred to 37°C and was halted when cells grown at 37°C were transferred to 20°C. These findings suggest that temperature regulates the synthesis of this enzyme and therefore the concentration of CMP-Neu5Ac necessary for the biosynthesis of colominic acid.  相似文献   

15.
Two transport systems for glucose were detected: a high affinity system with a Km of 27 μM, and a low affinity system with a Km of 3.3 mM. The high affinity system transported glucose, 2-deoxy-d-glucose (Km = 26 μM), 3-O-methylglucose (Km = 19 μM), d-glucosamine (Km = 652 μM), d-fructose (Km = 2.3 mM) and l-sorbose (Km = 2.2 mM). All sugars were accumulated against concentration gradients. The high affinity system was strongly or completely inhibited by N-ethylmaleimide, quercetin, 2,4-dinitrophenol and sodium azide. The system had a distinct pH optimum (7.4) and optimum temperature (45°C). The low affinity system transported glucose, 2-deoxy-d-glucose (Km = 7.5 mM), and 3-O-methylglucose (Km = 1.5 mM). Accumulation again occurred against a concentration gradient. The low affinity system was inhibited by N-ethylmaleimide, quercetin and 2,4-dinitrophenol, but not by sodium azide. The rate of uptake by the low affinity system was constant over a wide temperature range (30–50°C) and was not much affected by pH; but as the pH of the medium was altered from 4.5 to 8.9 a co-ordinated increase in affinity for 2-deoxy-d-glucose (from 52.1 mM to 0.3 mM) and decrease in maximum velocity (by a factor of five) occurred. Both uptake systems were present in sporelings germinated in media containing sodium acetate as sole carbon source. Only the low affinity system could initially be demonstrated in glucose-grown tissue, although the high affinity system was restored by starvation in glucose-free medium. The half-time for restoration of high affinity activity was 3.5 min and the process was unaffected by cycloheximide. Addition of glucose to an acetate-grown culture inactivated the high affinity system with a half-life of 5–7.5 s. Addition of cycloheximide to an acetate-grown culture caused decay of the high affinity system with a half-life of 80 min. Regulation is thus thought to depend on modulation of protein activity rather than synthesis, and the kinetics of glucose, 2-deoxy-d-glucose and 3-O-methylglucose uptake would be consistent with there being a single carrier showing negative co-operativity.  相似文献   

16.
Mitochondria were stained in liver, kidney, pancreas, adrenal and intestinal mucosa of rat and mouse. Tissues 1 mm thick, were fixed in a mixture of saturated aqueous HgCl2, 90 ml; formalin (37-38% HCHO), 10 ml, at room temperature (25°C) for 1 hr. Deparaffinized sections 3-4μ thick were treated with Lugol's iodine (U.S.P.) followed by Na2S2O3 (5%), rinsed in water and the ribonucleic acid removed by any of the following procedures: 0.2 M McIlavaine's buffer, pH 7.0, 2 hr, or 0.2 M phosphate buffer, pH 7.0, 2 hr at 37°C; 0.1% aqueous ribonuclease, 2 hr at 37°C; 5% aqueous trichloracetic acid overnight at 37°C; or 1% KOH at room temperature for 1 hr. After washing in water, sections were treated with a saturated solution of ferric ammonium alum at 37°C for 8-12 hr and colored by Regaud's ripened hematoxylin for 18 hr. They were then differentiated in 1% ferric ammonium alum solution while under microscopic observation.  相似文献   

17.
P.S. Rao  E. Hayon 《BBA》1973,292(3):516-533
A large number of biologically-important organic and inorganic free radicals have been produced in aqueous solutions, using the fast-reaction technique of pulse radiolysis and kinetic absorption spectrophotometry. The reactions of these free radicals with menaquinone (vitamin K3, E0 = 0.42 V) were followed by observing the formation kinetics of the semiquinone radical anion of menaquinone, •MK. The absorption spectrum of •MK has maxima at 395 nm and 300 nm, with extinction coefficients of 1.1·104 and 1.25·104 M−1·cm−1, respectively. The pKa of the radical •MK-H+ is 4.6±0.1. The free radicals were produced by a one-electron oxidation or reduction of various compounds by hydroxyl radicals and solvated electrons, eaq. Alcohols, sugars, carboxylic acids, amino acids, peptides, aliphatic amines and amides, aromatic and heterocyclic molecules, pyridine derivatives (nicotinamide, NAD+), and transition metal ions have been examined. Significant differences have been observed in both the efficiency (expressed in percentage) and the rate constants of the electron transfer reactions from these free radicals to menaquinone. Absolute rates of electron transfer from approx. 5·108–5·109 M−1·s−1 have been observed for most of the free radicals studied. Information relating to the nature of the radicals and the acid-base properties of these radicals for effective one-electron redox reactions with quinones is indicated.  相似文献   

18.
Models of the cultivation process of Actinobacillus sp. cells in two media, rich (NB) and minimal (M9) that includes phenol as a sole carbon source, have not been described in the available literature. For these reasons, several single-substrate inhibition models (Monod, Andrew, and Tesseir) were investigated in order to determine the mathematical expression of Actinobacillus sp. growth rate. The experimental data for both nutrient broth and M9 media were fitted to the above models mentioning that Andrews' model best fits these data adequately for both media with regression coefficient of 0.973 and 0.962, respectively. The maximum predicted growth rate by this model is 0.37 h- 1 for both media obtained when the initial concentration of phenol is 100 mg/L. The half-saturation concentration constant, KP, is 1.00 mg/L, which represents the phenol concentration when μ is equal to half μmax. On the other hand, the inhibition constant, Kp is 13,000.00 mg/L for broth medium and 12,000 mg/L for M9 medium, which is a measure of sensitivity to inhibition by inhibitory substances. When cells are grown in nutrient broth and minimal media, the rate of cell production with time can be expressed by the Reccati and Voltera models. Voltera model better fits in the case of M9 minimal medium plus phenol as sole carbon source. The pH of 7, the incubation temperature of 35°C to 37°C, and the agitation rate of 150 rpm are the optimal conditions for achieving the higher percentage of phenol degradation by Actinobacillus sp. Succinic acid and glycine as carbon and nitrogen source, respectively, were the most efficient of the cosubstrates (out of 10 substrates tested) for removal of phenol on an mg/L basis.  相似文献   

19.
A.J. Dhami  K.L. Sahni 《Theriogenology》1993,40(6):1269-1280
We studied the effects of 2 diluents (Tris and milk), 4 cooling rates (10°C/30°C to 5°C for 1 or 2 h), 2 equilibration periods (0 and 2 h) and their interactions on the freezability, glutamic oxaloacetic transaminase (GOT) leakage and fertility of frozen-thawed semen in 18 ejaculates from 3 Friesian bulls. The means of pre- and post-freezing motility, GOT leakage and fertility rates (52.81% based on follow up of 267 inseminated cows) were significantly (P<0.01) influenced by the bulls, cooling rates & equilibration periods, but not by diluents or the interactions studied. The mean prefreeze motility of spermatozoa following 1 h of cooling from 10°C to 5°C was significantly lower (60.38%) and that after 2 h of cooling from 30°C to 5°C was higher (72.38%) than 2 h of cooling from 10°C to 5°C (66.57%) or 1 h of cooling from 30°C to 5°C (67.96%). The mean post-thaw motility observed following 2 h of prefreeze cooling was, however, significantly greater (45%) than after 1 h of cooling (35%) for both the initial temperatures. Leakage of GOT pre- and post-freezing was significantly less following 2h of cooling from 30°C to 5°C (17.26 and 27.36 μmole/L) than after 1 h of cooling from either 10°C (19.71 and 30.13 μmole/L) or 30°C (18.95 and 29.58 μmole/L) and 2 h of cooling from 10°C to 5°C (21.43 and 34.48 μmole/L). The conception rates for semen frozen at the above cooling rates (66.13, 48.65, 56.67 and 42.25%, respectively) were inverse to GOT leakage. An equilibration period of 2 h over that of 0 h at 5°C adversely affected the prefreeze motility and GOT leakage, but it significantly improved postthaw motility (44.03 vs 35.49%) and fertility rates (57.86 vs 47.24%). These findings suggested that both Trisand milk-based diluents were equally efficacious for cryopreservation of bovine semen, and that slow cooling of semen straws over a period of 2 h from 30°C to 5°C as compared with faster cooling rates or a lower initial temperature (10°C), plus at least 2 h of equilibration time at 5°C were essential for optimal freezability, lower enzyme leakage & higher fertility rates within the tropics.  相似文献   

20.

Objective(s)

To determine if mishandling prior to testing would make a sample from a chronically infected subject appear recently infected when tested by cross-sectional HIV incidence assays.

Methods

Serum samples from 31 subjects with chronic HIV infection were tested. Samples were subjected to different handling conditions, including incubation at 4°C, 25°C and 37°C, for 1, 3, 7 or 15 days prior to testing. Samples were also subjected to 1,3, 7 and 15 freeze-thaw cycles prior to testing. Samples were tested using the BED capture enzyme immuno assay (BED-CEIA), Vironostika-less sensitive (V-LS), and an avidity assay using the Genetic Systems HIV-1/HIV-2 plus O EIA (avidity assay).

Results

Compared to the sample that was not subjected to any mishandling conditions, for the BED-CEIA, V-LS and avidity assay, there was no significant change in test results for samples incubated at 4°C or 25°C prior to testing. No impact on test results occurred after 15 freeze-thaw cycles. A decrease in assay results was observed when samples were held for 3 days or longer at 37°C prior to testing.

Conclusions

Samples can be subjected up to 15 freeze-thaw cycles without affecting the results the BED-CEIA, Vironostika-LS, or avidity assays. Storing samples at 4°C or 25°C for up to fifteen days prior to testing had no impact on test results. However, storing samples at 37°C for three or more days did affect results obtained with these assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号