首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doubled haploid (DH) populations are useful to scientists and breeders in both crop improvement and basic research. Current methods of producing DHs usually need in vitro culture for extracting haploids and chemical treatment for chromosome doubling. This report describes a simple method for synthesizing DHs (SynDH) especially for allopolyploid species by utilizing meiotic restitution genes. The method involves three steps: hybridization to induce recombination, interspecific hybridization to extract haploids, and spontaneous chromosome doubling by selfing the interspecific F1s. DHs produced in this way contain recombinant chromosomes in the genome(s) of interest in a homogeneous background. No special equipment or treatments are involved in the DH production and it can be easily applied in any breeding and/or genetic program. Triticum turgidum L. and Aegilops tauschii Coss, the two ancestral species of common wheat (Triticum aestivum L.) and molecular markers were used to demonstrate the SynDH method.  相似文献   

2.
Wheat resistance to common bunt is a highly desirable trait for environmentally friendly grain grade protection. Valuable breeding achievements have been made to develop wheat varieties with enhanced resistance to the disease, and mapping of race-specific resistance genes has been reported. However, less is known of the chromosomal regions that control non-race specific resistance to common bunt. In this study, we have characterized a segregating population of 185 doubled haploid spring wheat lines derived from the cross RL4452 × AC Domain. Reactions to a mixture of common bunt races were assessed under field simulated spring-sown conditions in greenhouses in two locations over 2 years. A total 369 polymorphic maker loci including 356 microsatellite loci, five expressed sequences tag (ESTs), and eight genes were used to develop a linkage map. Quantitative trait loci (QTL) analysis using composite interval mapping detected three QTLs associated with common bunt resistance, of which two were located on chromosome 1B and one on chromosome 7A. AC Domain alleles contributed the common bunt resistance at all three QTLs. Usefulness of gene tagging within the identified chromosomal regions for common bunt resistance breeding is discussed.  相似文献   

3.
A number of technologies are available to increase the abundance of DNA markers and contribute to developing high resolution genetic maps suitable for genetic analysis. The aim of this study was to expand the number of Diversity Array Technology (DArT) markers on the wheat array that can be mapped in the wheat genome, and to determine their chromosomal location with respect to simple sequence repeat (SSR) markers and their position on the cytogenetic map. A total of 749 and 512 individual DArT and SSR markers, respectively, were identified on at least one of four genetic maps derived from recombinant inbred line (RIL) or doubled haploid (DH) populations. A number of clustered DArT markers were observed in each genetic map, in which 20–34% of markers were redundant. Segregation distortion of DArT and SSR markers was also observed in each mapping population. Only 14% of markers on the Version 2.0 wheat array were assigned to chromosomal bins by deletion mapping using aneuploid lines. In this regard, methylation effects need to be considered when applying DArT marker in genetic mapping. However, deletion mapping of DArT markers provides a reference to align genetic and cytogenetic maps and estimate the coverage of DNA markers across the wheat genome. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Zhang K  Tian J  Zhao L  Liu B  Chen G 《Genetica》2009,135(3):257-265
Quantitative trait loci (QTLs) with epistatic and QTL × environment (QE) interaction for heading date were studied using a doubled haploid (DH) population containing 168 progeny lines derived from a cross between two elite Chinese wheat cultivars Huapei 3 × Yumai 57 (Triticum aestivum L.). A genetic map was constructed based on 305 marker loci, consisting of 283 SSR loci and 22 EST-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers in the genome. QTL analyses were performed using a mixed linear model approach. Two main-effect QTLs and two pairs of digenic epistatic effects were detected for heading date on chromosomes 1B, 2B, 5D, 6D, 7A, and 7D at three different environments in 2005 and 2006 cropping seasons. A highly significant QTL with an F-value 148.96, designated as Qhd5D, was observed within the Xbarc320-Xwmc215 interval on chromosome 5DL, accounting for 53.19% of the phenotypic variance and reducing days-to-heading by 2.77 days. The Qhd5D closely links with a PCR marker Xwmc215 with the genetic distance 2.1 cM, which can be used in molecular marker-assisted selection (MAS) in wheat breeding programs. Moreover, the Qhd5D was located on the similar position of well-characterised vernalization sensitivity gene Vrn-D1. We are also spending more efforts to develop near-isogenic lines to finely map the Qhd5D and clone the gene Vrn-D1 through map-based cloning. The Qhd1B with additive effect on heading date has not been reported in previous linkage mapping studies, which might be a photoperiod-sensitive gene homoeologous to the Ppd-H2 gene on chromosome 1B. No main-effect QTLs for heading date were involved in epistatic effects.  相似文献   

5.
Summary A very significant improvement of the total yield of androgenetic green plants after anther culture is presented. The process involves treatment of the donor plants by spraying at different stages around the meiosis with a chemical hybridization agent (CHA) solution, fenridazon-potassium. When harvested at the normal uninucleate pollen grain stage, anthers have shown during in vitro culture very significant increases in embryo production. Compared to the control, we observed up to a 20-fold increase in the production. Moreover, when cultivated later, anthers still remained embryogenic. Therefore the process appears to be very efficient and to allow a broadening of the target period for androgenesis in vitro. The regeneration was not disturbed by the CHA treatment and, as shown in this paper, the technique seems to be applicable to a large range of genotypes. Cytological observations revealed both a low frequency of aneuploidy among the regenerated plants and peculiar features in the pollen grain walls after treatments; a triploid plant was observed. Hypotheses to explain the phenomenon are presented and related to previous observations on the effects of gametocide substances like ethrel, male sterility and pollen dimorphism on androgenesis.  相似文献   

6.
We report here the RFLP mapping of quantitative triat loci (QTLs) that affect some important agronomic traits in cultivated rice. An anther culturederived doubled haploid (DH) population was established from a cross between an indica and a japonica rice variety. On the basis of this population a molecular linkage map comprising 137 markers was constructed that covered the rice genome at intervals of 14.8cM on average. Interval mapping of the linkage map was used to locate QTLs for such important agronomic traits as heading date, plant height, number of spikelets per panicle, number of grains Per panicle, 1000-grain weight and percentage of seed set. Evidence of genotype-byenvironment interaction was found by comparing QTL maps of the same population grown in three diverse environments. A total of 22 QTLs for six agronomic traits were detected that were significant in at least one environment, but only 7 were significant in all three environments, 7 were significant in two environments and 8 could only be detected in a single environment. However, QTL-by-environment interaction was traitdependent. QTLs for spikelets and grains per panicle were common across environments, while traits like heading date and plant height were more sensitive to environment.  相似文献   

7.
Anther culture and maize hybridization are two frequently used techniques for doubled haploid production in wheat (Triticum aestivum L.). Information on the field performance of lines derived from these techniques is limited. This study was conducted to compare the performance of F4:6 lines obtained by single-seed descent with lines obtained by anther culture and maize (Zea mays L.) pollination from the same cross of spring wheat, ’Chris’/MN 7529. Thirty-three lines derived from each of those techniques were evaluated in six environments for grain yield, protein content, test weight, heading date, kernel weight and plant height. Mean performance of the single-seed descent lines exceeded performance of the anther culture lines for grain yield, kernel weight and plant height with no apparent differences for grain protein content, test weight and heading date. No differences between trait means for the single-seed descent and maize pollination lines were found except for plant height. The best 5 lines from each method for grain yield, protein content and test weight were similar in performance except that the protein content was higher for the maize pollination lines than for the single-seed descent lines. Acceptable levels of agronomic performance could be found among lines from each method. Wide acceptance of the doubled haploid technique for pure line production in breeding programs may, however, be limited by the often poor efficiency of doubled haploid line production, resulting in smaller population sizes for selection of desirable traits in comparison to the single-seed descent method. Received: 31 July 1998 / Accepted: 28 November 1998  相似文献   

8.
The aim of this work was to study the effects of colchicine application on chromosome doubling and androgenic response in anther and microspore culture of different bread wheat genotypes. Colchicine was applied during a mannitol stress pretreatment or during the first 48 h of culture at concentrations of 0, 150 and 300 mg l−1. When colchicine was applied during stress pretreatment, the percentage of doubling depended on genotype and concentration. A significant increase in doubling was observed with 300 mg l−1 in the low androgenic responding cv. Caramba. Colchicine incorporation during the first hours of culture improved percentage of doubling in all genotypes, in both anther and microspore culture. Application of 300 mg l−1 colchicine improved the percentage of doubling in the two low responding genotypes, to 118% of control in DH24033, and 75% in Caramba in microspore and anther culture, respectively. Concerning the androgenic response, the effect of colchicine on embryo formation and percentage of green plants depended on the genotype and on the culture method. In cv. Pavon, a 2- and a 3-fold increase in percentage of embryogenesis and green plants, respectively, were obtained with 300 mg l−1 colchicine in microspore culture. However, no significant differences in these two variables were observed in anther culture. The number of green doubled haploid (DH) plants reflects the index of success of the procedure. Regardless of the culture method, when colchicine was incorporated during the first hours of culture, the number of green DH plants increased significantly in three of four genotypes. These results confirm the usefulness of colchicine application during the first hours of culture in wheat breeding programs.  相似文献   

9.
High-molecular-weight glutenin subunits (HMW-GS) are important determinants of wheat dough quality as they confer visco-elastic properties to the dough required for mixing and baking performance. With this important role, the HMW-GS alleles are key markers in breeding programs. In this work, we present the use of a PCR marker initially designed to discriminate Glu1 Bx7 and Glu1 Bx17 HMW-GS. It was discovered that this marker also differentiated two alleles, originally both scored as Glu1 Bx7, present in the wheat lines CD87 and Katepwa respectively, by a size polymorphism of 18 bp. The marker was scored across a segregating doubled-haploid (DH) population (CD87 × Katepwa) containing 156 individual lines and grown at two sites. Within this population, the marker differentiated lines showing the over-expression of the Glu1 Bx7 subunit (indicated by the larger PCR fragment), derived from the CD87 parent, relative to lines showing the normal expression of the Glu1 Bx7 subunit, derived from the Katepwa parent. DNA sequence analysis showed that the observed size polymorphism was due to an 18 bp insertion/deletion event at the C-terminal end of the central repetitive domain of the Glu1 Bx 7 coding sequence, which resulted in an extra copy of the hexapeptide sequence QPGQGQ in the deduced amino-acid sequence of Bx7 from CD87. When the DH population was analysed using this novel Bx7 PCR marker, SDS PAGE and RP HPLC, there was perfect correlation between the Bx7 PCR marker results and the expression level of Bx7. This differentiation of the population was confirmed by both SDS-PAGE and RP-HPLC. The functional significance of this marker was assessed by measuring key dough properties of the 156 DH lines. A strong association was shown between lines with an over expression of Bx7 and high dough strength. Furthermore, the data demonstrated that there was an additional impact of Glu-D1 alleles on dough properties, with lines containing both over-expressed Bx7 and Glu-D1 5+10 having the highest levels of dough strength. However, there was no statistically significant epistatic interaction between Glu-B1 and Glu-D1 loci.Communicated by J.W. Snape  相似文献   

10.
The abnormalities of haploid medaka embryos were characterized by comparative analysis of histologic sections and expression patterns of some developmental marker genes between haploids and diploids to clarify whether medaka haploids are useful for identifying mutants. During gastrulation, an obvious defect was first observed as a delay of epiboly and involution. This delay was shown to be caused not by the perturbation of mesoderm induction, but by widespread cell death and disorganization of cell arrangement in the blastoderm. This disorganization of cell arrangement was also detected in various organs, such as the brain, somite and notochord, at a late developmental stage. Ten days after fertilization, a small head and a short body axis were formed; these changes were also observed in haploid embryos in other species, but their cause is unknown. Based on the expression patterns of HNF3beta and goosecoid, it was demonstrated that a short and impotent prechordal plate induced near the marginal zone in haploid embryos was responsible for this defect. However, in these experiments it was also demonstrated that many major organs in haploids, such as the somite and notochord, differentiated incompletely but were present. Therefore, it was concluded that haploid screening is suitable for identifying mutations revealed by an obvious phenotype, such as dorsoventral polarity.  相似文献   

11.
Quantitative trait loci (QTLs) for plant height in wheat (Triticum aestivum L.) were studied using a set of 168 doubled haploid (DH) lines, which were derived from the cross Huapei 3/Yumai 57. A genetic linkage map was constructed using 283 SSR and 22 EST-SSR markers. The DH population and the parents were evaluated for wheat plant height in 2005 and 2006 in Tai’an and 2006 in Suzhou. QTL analyses were performed using the software of QTLNetwork version 2.0 based on the mixed linear model. Four additive QTLs and five pairs of epistatic effects were detected, which were distributed on chromosomes 3A, 4B, 4D, 5A, 6A, 7B, and 7D. Among them, three additive QTLs and three pairs of epistatic QTLs showed QTL×environment interactions (QEs). Two major QTLs, Qph4B and Qph4D, which accounted for 14.51% and 20.22% of the phenotypic variation, were located similar to the reported locations of the dwarfing genes Rht1 and Rht2, respectively. The Qph3A-2 with additive effect was not reported in previous linkage mapping studies. The total QTL effects detected for the plant height explained 85.04% of the phenotypic variation, with additive effects 46.07%, epistatic effects 19.89%, and QEs 19.09%. The results showed that both additive effects and epistatic effects were important genetic bases of wheat plant height, which were subjected to environmental modifications, and caused dramatic changes in phenotypic effects. The information obtained in this study will be useful for manipulating the QTLs for wheat plant height by molecular marker-assisted selection (MAS).  相似文献   

12.
L Zhang  J Luo  M Hao  L Zhang  Z Yuan  Z Yan  Y Liu  B Zhang  B Liu  C Liu  H Zhang  Y Zheng  D Liu 《BMC genetics》2012,13(1):69-8
ABSTRACT: BACKGROUND: A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. RESULTS: Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. CONCLUSIONS: A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.  相似文献   

13.
Chlorophyll content, one of the most important physiological parameters related to plant photosynthesis, is usually used to predict yield potential. To map the quantitative trait loci (QTLs) underlying the chlorophyll content of rice leaves, a double haploid (DH) population was developed from an indica/japonica (Zhenshan 97/Wuyujing 2) crossing and two backcross populations were established subsequently by backcrossing DH lines with each of their parents. The contents of chlorophyll a and chlorophyll b were determined by using a spectrophotometer to directly measure the leaf chlorophyll extracts. To determine the leaf chlorophyll retention along with maturation, all measurements were performed on the day of heading and were repeated 30 days later. A total of 60 QTLs were resolved for all the traits using these three populations. These QTLs were distributed on 10 rice chromosomes, except chromosomes 5 and 10; the closer the traits, the more clustering of the QTLs residing on common rice chromosomal regions. In general, the majority of QTLs that specify chlorophyll a content also play a role in determining chlorophyll b content. Strangely, chlorophyll content in this study was found mostly to be lacking or to have a negative correlation with yield. In both backcross F1 populations, overdominant (or underdominant) loci were more important than complete or partially dominant loci for main-effect QTLs and epistatic QTLs, thereby supporting previous findings that overdominant effects are the primary genetic basis for depression in inbreeding and heterosis in rice.  相似文献   

14.
A rice RFLP map with 233 loci based on a population of 81 doubled haploids (DH) from the indica/japonica hybrid of "Gui 630'/"02428" was used to analyse the genome ratios and graphical genotypes of DH lines. The “Gui 630” genome ratio of the individual DH lines varied from 29.3% to 78.6% with an average of 49% while the ratios of most DH lines ranged between 44% and 49%. Of the mapped RFLP markers 130 showed skewed segregations with a significant deviation from the expected monogenic ratio, but the numbers of the markers deviated towards male and female parent were approximately equal. It was found that the markers with the segregation deviation in the same direction tend to cluster on some chromosomes and some of their regions. The average "Gui 630' genome ratios of different chromosomes in the DH population varied greatly between 29% and 65 %. In addition, several chromosomes were inherited completely from either one of the parents in some DH lines, indicating the rare occurrence of crossover along the pairing homologous chromosomes during meiosis.  相似文献   

15.
基于过程的小麦茎鞘夹角动态模拟   总被引:1,自引:0,他引:1  
Zhang WY  Tang LA  Zhu XC  Yang Y  Cao WX  Zhu Y 《应用生态学报》2011,22(7):1765-1770
基于不同株型品种和不同密度处理的小麦田间试验,连续观察并记录各处理不同叶位叶鞘与主茎之间的夹角,进一步利用系统分析方法和动态建模技术,构建基于过程的小麦叶片茎鞘夹角的动态模拟模型.结果表明:小麦茎鞘夹角随叶片生育进程不断加大,并随密度的增大而减小;从第2叶开始,最大茎鞘夹角随叶位的增加而减小.所建模型利用Logistic方程描述叶片茎鞘夹角随生育进程的动态变化过程,使用分段函数描述最大茎鞘夹角随叶位的动态变化,引入品种参数(第2叶茎鞘夹角的最大值)量化了茎鞘夹角在不同品种之间的差异,并利用基本苗量化了密度对茎鞘夹角的影响.基于独立的田间试验资料对所建模型进行测试与检验,结果显示茎鞘夹角模拟值与观测值之间的均方根差为1.7°.表明模型对小麦主茎叶片茎鞘夹角的动态变化过程具有较好的预测性,为小麦生长过程的可视化表达奠定了技术基础.  相似文献   

16.
RFLP segregation analyses were performed on a F2 population and two F1 microspore-derived populations from the same cross between a microspore culture-responsive parent (Topas) and a non-responsive parent (Westar). A total of 145 loci were detected with 87 cDNA clones. Eighty-two markers were common across all three populations. A total of 66 markers was assembled into 18 linkage groups and 16 markers remained unlinked. Segregation distortions were significant for 29% of the markers in the F2 population and 23% and 31% in microspore-derived populations M3 and M5, respectively. An equivalent number of markers showed biased segregation towards each parental allele in the F2 population while more markers showed a significant deviation from the expected Mendelian ratio towards the responsive parent in both microspore-derived populations. Different subsets of markers showed segregation distortions in the three populations indicating that the selective pressures leading to microsporederived plants are different from those acting during selfing of the F1. Linkage groups 1 and 18 were identified as putative chromosomal regions associated with microspore-culture responsiveness.  相似文献   

17.
P. Joliot  A. Joliot 《BBA》1977,462(3):559-574
1. The amplitudes of the fast (0–20 μs) and slow (20 μs–2 ms) fluorescence rise induced by a 2 μs flash have been measured as a function of the energy of the flash in chloroplasts inhibited by 3(3,4-dichlorophenyl)-1,1-dimethylurea. The saturation curve for the slow rise shows a characteristic lag which is not observed for the fast fluorescence rise. This lag indicates that Photosystem II centers undergo a double hit process which implies that (a), each photocenter includes two acceptors Q1 and Q2; (b), after the first hit, oxidized chlorophyll Chl+ is reduced by a secondary acceptor Y in a time short compared to the duration of the flash; (c), after the second hit, Chl+ is reduced by another secondary donor, D.

2. According to Den Haan et al. ((1974) Biochim. Biophys. Acta 368, 409–421), hydroxylamine destroys the secondary donor responsible for the fast reduction of Chl+. In the presence of 3 mM hydroxylamine, only the secondary donor D is functional and a flash induces mainly a single hit process.

3. The saturation curves for the fast and the slow rises have been studied in the presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea for a second actinic flash given 2.5 s after a first saturating one. The large decrease in the half-saturating energy indicates the existence of efficient energy transfer occuring between photosynthetic units.

4. Two alternate hypotheses are discussed (a) in which D is an auxiliary donor and (b) in which D is included in the main electron transfer chain.  相似文献   


18.
1. The amplitudes of the fast (0-20 microseconds) and slow (20 microseconds-2 ms) fluorescence rise induced by a 2 microseconds flash have been measured as a function of the energy of the flash in chloroplasts inhibited by 3(3,4-dichlorophenyl)-1, 1-dimethylurea. The saturation curve for the slow rise shows a characteristic lag which is not observed for the fast fluorescence rise. This lag indicates that Photosystem II centers undergo a double hit process which implies that (a), each photocenter includes two acceptors Q1 and Q2; (B), after the first hit, oxidized chlorophyll Chl+ is reduced by a secondary acceptor Y in a time shor compared to the duration of the flash; (c), after the second hit, Chl+ is reduced by another secondary donor, D. 2. According to Den Haan et al. (1974) Biochim. Biophys. Acta 368, 409-421), hydroxylamine destroys the secondary donor responsible for the fast reduction of Chl+. In the presence of 3 mM hydroxylamine, only the secondary donor D is functional and a flash induses mainly a single hit process. 3. The saturation curves for the fast and the slow rises have been studied in the presence of 3(3,4-dichlorophenyl)-1, 1-dimethylurea for a second actinic flash given 2.5 s after a first saturating one. The large decrease in the half-saturating energy indicates the existence of efficient energy transfer occuring between potosynthetic units. 4. Two alternate hypotheses are discussed (a) in which D is an auxiliary donor and (b) in which D is included in the main electron transfer chain.  相似文献   

19.
Wheat is one of the most widely grown cereal crops in the world and is an important food grain source for humans. However, wheat yields can be reduced by many abiotic and biotic stress factors, including powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt). Generating resistant varieties is thus a major effort in plant breeding. Here, we took advantage of the non‐transgenic Targeting Induced Lesions IN Genomes (TILLING) technology to select partial loss‐of‐function alleles of TaMlo, the orthologue of the barley Mlo (Mildew resistance locus o) gene. Natural and induced loss‐of‐function alleles (mlo) of barley Mlo are known to confer durable broad‐spectrum powdery mildew resistance, typically at the expense of pleiotropic phenotypes such as premature leaf senescence. We identified 16 missense mutations in the three wheat TaMlo homoeologues, TaMloA1, TaMloB1 and TaMloD1 that each lead to single amino acid exchanges. Using transient gene expression assays in barley single cells, we functionally analysed the different missense mutants and identified the most promising candidates affecting powdery mildew susceptibility. By stacking of selected mutant alleles we generated four independent lines with non‐conservative mutations in each of the three TaMlo homoeologues. Homozygous triple mutant lines and surprisingly also some of the homozygous double mutant lines showed enhanced, yet incomplete, Bgt resistance without the occurrence of discernible pleiotropic phenotypes. These lines thus represent an important step towards the production of commercial non‐transgenic, powdery mildew‐resistant bread wheat varieties.  相似文献   

20.
Abstract An isolate of Pseudomonas aureofaciens from the phylloplane of sugar beet which was chromosomally modified for monitors purposes by the insertion of two gene cassettes (kmr- xyl E and lac ZY) was introduced to the phytosphere of spring wheat in a number of experiments and the resulting microbial perturbations quantified. Such studies involving innocuous bacterial isolates can serve as a guide in the assessment of risk associated with the release of functionally modified microorganisms. Introductions of P. aureofaciens on seeds caused large microbial perturbations (up to 2 log units) at the seedling stage on seeds and roots. As the inoculated plants matured (tillering, flowering and ripening), perturbations of total microbial populations were found to be non-significant. Microbial perturbation on maturing wheat roots as a result of seed inoculations with P. aureofaciens could only be detected using more sensitive monitoring procedures describing the Pseudomonas community in terms of colony appearance rate on a selective Pseudomonas medium. Spray applications of the marked P. aureofaciens isolate onto the leaf surface of wheat caused no significant perturbations of the indigenous microbial present on the phylloplane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号