首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

Real-time quantitative PCR (RQ-PCR) forms the basis of many breast cancer biomarker studies and novel prognostic assays, paving the way towards personalised cancer treatments. Normalisation of relative RQ-PCR data is required to control for non-biological variation introduced during sample preparation. Endogenous control (EC) genes, used in this context, should ideally be expressed constitutively and uniformly across treatments in all test samples. Despite widespread recognition that the accuracy of the normalised data is largely dependent on the reliability of the EC, there are no reports of the systematic validation of genes commonly used for this purpose in the analysis of gene expression by RQ-PCR in primary breast cancer tissues. The aim of this study was to identify the most suitable endogenous control genes for RQ-PCR analysis of primary breast tissue from a panel of eleven candidates in current use. Oestrogen receptor alpha (ESR1) was used a target gene to compare the effect of choice of EC on the estimate of gene quantity.  相似文献   

2.

MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that regulate the expression of genes, and they affect important biological and physiological states. Circulating miRNAs in blood are useful markers of metabolism and economic traits. Expression levels of circulating miRNAs have been estimated using quantitative real-time PCR (qPCR). Proper normalization is critical for accurate miRNA expression analysis. However, there is no study which systematically presented endogenous reference genes for evaluating circulating miRNA expression in pigs. In this study, ten porcine miRNAs (let-7a, miR-16, miR-17, miR-23a, miR-26a, miR-93, miR-103, miR-107, miR-127 and miR-191), based on the literature, were chosen as candidate reference miRNAs in serum. We evaluated the expression stability value of these miRNAs in Berkshire, Duroc, Landrace and Yorkshire pigs using geNorm and NormFinder. We determined the optimal combination of reference miRNAs for qPCR experiments: miR-127 and miR-17 in Berkshire pigs; miR-127 and miR-93 in Duroc and Landrace pigs; miR-127 and miR-16 in Yorkshire pigs. miR-127 was the best reference gene in pigs, regardless of the breed. Our study is crucial for the discovery of novel biomarkers in pigs. The reference miRNAs presented in this study could be used as appropriate reference genes for the measurement of circulating miRNA levels in studies of physiological blood metabolites.

  相似文献   

3.
The partial cDNA sequences of eight reference genes (actb, tuba1, gapdh58, gapdh59, eef1a1, RNA 18 s, pabpc1, ube2I) were cloned from largemouth bass Micropterus salmoides. The expression levels of these eight genes were compared in the various tissues (eye, spleen, kidney, gill, muscle, brain, liver, heart, gut and gonad) of M. salmoides fed on forage fish. The results showed that the candidate genes exhibited tissue-specific expression to various degrees and the stability ranking order was eef1a1 > tuba1 > RNA 18 s > pabpc1 > ube2I > actb > gapdh58 > gapdh59 among tissue types. Four candidate genes eef1a1, tuba1, RNA 18 s and actb were used to analyse the stability in liver tissues of largemouth bass between the forage-fish group and the formulated-feed group. The candidate genes also showed some changes in expression levels in the livers, while eef1a1 and tuba1 had the most stable expression in livers of fish fed on alternative diets within 10 candidates. So eef1a1 and tuba1 were recommended as optimal reference gene in quantitative real-time PCR analysis to normalise the expression levels of target genes in tissues and lives of the M. salmoides fed on alternative diets. In livers, the expression levels of gck normalised by eef1a1 and tuba1 showed the significant up-regulation in formulated feed group (P < 0.05) than those in forage-fish group. While sex difference has no significant effects on the expression levels of gck in both groups.  相似文献   

4.
5.
ABSTRACT: BACKGROUND: The selection of stable and suitable reference genes for real-time quantitative PCR (RT-qPCR) is a crucial prerequisite for reliable gene expression analysis under different experimental conditions. The present study aimed to identify reference genes as internal controls for gene expression studies by RT-qPCR in azole-stimulated Candida glabrata. RESULTS: The expression stability of 16 reference genes under fluconazole stress was evaluated using fold change and standard deviation computations with the hkgFinder tool. Our data revealed that the mRNA expression levels of three ribosomal RNAs (RDN5.8, RDN18, and RDN25) remained stable in response to fluconazole, while PGK1, UBC7, and UBC13 mRNAs showed only approximately 2.9-, 3.0-, and 2.5-fold induction by azole, respectively. By contrast, mRNA levels of the other 10 reference genes (ACT1, EF1a, GAPDH, PPIA, RPL2A, RPL10, RPL13A, SDHA, TUB1, and UBC4) were dramatically increased in C. glabrata following antifungal treatment, exhibiting changes ranging from 4.5- to 32.7-fold. We also assessed the expression stability of these reference genes using the 2-[increment][increment]CT method and three other software packages. The stability rankings of the reference genes by geNorm and the 2-[increment][increment]CT method were identical to those by hkgFinder, whereas the stability rankings by BestKeeper and NormFinder were notably different. We then validated the suitability of six candidate reference genes (ACT1, PGK1, RDN5.8, RDN18, UBC7, and UBC13) as internal controls for ten target genes in this system using the comparative CT method. Our validation experiments passed for all six reference genes analyzed except RDN18, where the amplification efficiency of RDN18 was different from that of the ten target genes. Finally, we demonstrated that the relative quantification of target gene expression varied according to the endogenous control used, highlighting the importance of the choice of internal controls in such experiments. CONCLUSIONS: We recommend the use of RDN5.8, UBC13, and PGK1 alone or the combination of RDN5.8 plus UBC13 or PGK1 as reference genes for RT-qPCR analysis of gene expression in C. glabrata following azole treatment. In contrast, we show that ACT1 and other commonly used reference genes (GAPDH, PPIA, RPL13A, TUB1, etc.) were not validated as good internal controls in the current model.  相似文献   

6.
7.
8.
9.
Sesame (Sesamum indicum L.) is an ancient and important oilseed crop. However, few sesame reference genes have been selected for quantitative real-time PCR until now. Screening and validating reference genes is a requisite for gene expression normalization in sesame functional genomics research. In this study, ten candidate reference genes, i.e., SiACT, SiUBQ6, SiTUB, Si18S rRNA, SiEF1α, SiCYP, SiHistone, SiDNAJ, SiAPT and SiGAPDH, were chosen and examined systematically in 32 sesame samples. Three qRT-PCR analysis methods, i.e., geNorm, NormFinder and BestKeeper, were evaluated systematically. Results indicated that all ten candidate reference genes could be used as reference genes in sesame. SiUBQ6 and SiAPT were the optimal reference genes for sesame plant development; SiTUB was suitable for sesame vegetative tissue development, SiDNAJ for pathogen treatment, SiHistone for abiotic stress, SiUBQ6 for bud development and SiACT for seed germination. As for hormone treatment and seed development, SiHistone, SiCYP, SiDNAJ or SiUBQ6, as well as SiACT, SiDNAJ, SiTUB or SiAPT, could be used as reference gene, respectively. To illustrate the suitability of these reference genes, we analyzed the expression variation of three functional sesame genes of SiSS, SiLEA and SiGH in different organs using the optimal qRT-PCR system for the first time. The stability levels of optimal and worst reference genes screened for seed development, anther sterility and plant development were validated in the qRT-PCR normalization. Our results provided a reference gene application guideline for sesame gene expression characterization using qRT-PCR system.  相似文献   

10.
11.
12.
13.
For accurate and reliable gene expression results, normalization of real-time PCR data is required against a control gene, which displays highly uniform expression in living organisms during various phases of development and under different environmental conditions. We assessed the gene expression of 10 frequently used housekeeping genes, including 18S rRNA, 25S rRNA, UBC, UBQ5, UBQ10, ACT11, GAPDH, eEF-1alpha, eIF-4a, and beta-TUB, in a diverse set of 25 rice samples. Their expression varied considerably in different tissue samples analyzed. The expression of UBQ5 and eEF-1alpha was most stable across all the tissue samples examined. However, 18S and 25S rRNA exhibited most stable expression in plants grown under various environmental conditions. Also, a set of two genes was found to be better as control for normalization of the data. The expression of these genes (with more uniform expression) can be used for normalization of real-time PCR results for gene expression studies in a wide variety of samples in rice.  相似文献   

14.
15.
16.
Wu  Yanyan  Tian  Qinglan  Huang  Weihua  Liu  Jieyun  Xia  Xiuzhong  Yang  Xinghai  Mou  Haifei 《Molecular biology reports》2020,47(4):2951-2962
Molecular Biology Reports - Passion fruit (Passiflora edulis), an important tropical and subtropical fruit, has a high edible and medicinal value. Stem rot disease is one of the most important...  相似文献   

17.
18.
19.

Background  

There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay.  相似文献   

20.
To obtain reliable results in quantitative PCR (qPCR) reactions, an endogenous control (EC) gene is needed to correct for systematic variations. In this study, a TaqMan low density array was used to quantify the expression levels of microRNA (miRNA) genes in in vivo fertilized, in vitro fertilized, parthenogenetic and somatic cell nuclear transfer blastocysts. The aim was to identify suitable EC genes for the qPCR analysis of miRNAs in porcine blastocysts. The results showed that thirty-six miRNAs were commonly expressed in the four kinds of embryos and the expression levels of eleven miRNAs were similar in the different embryo types (P-value>0.05). These 11 miRNAs were selected as candidate EC genes for further analysis and, of these, miR-16 was identified as the most stable EC gene by the GeNorm (a tool based on a pair-wise comparison model that calculates the internal control genes stability measure and determines the most reliable pair of EC genes) and NormFinder (an excel plug-in that uses an ANOVA-based model to estimate intra- and inter-group variation to indicate the single most stable EC gene) programs. In addition, a cell number normalization method validated miR-16 as a suitable EC gene for use in future qPCR analysis of miRNAs in porcine blastocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号