首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Glucagon is a peptide hormone with many uses as a therapeutic agent, including the emergency treatment of hypoglycemia. Physical instability of glucagon in solution leads to problems with the manufacture, formulation, and delivery of this pharmaceutical product. Glucagon has been shown to aggregate and form fibrils and gels in vitro. Small oligomeric precursors serve to initiate and nucleate the aggregation process. In this study, these initial aggregates, or seed nuclei, are characterized in bulk solution using light scattering methods and field-flow fractionation.  相似文献   

2.

Background  

Understanding and manipulating gene function in physiological conditions is a major objective for both fundamental and applied research. In contrast to other experimental settings, which use either purely genetic or gene delivery (viral or non-viral) strategies, we report here a strategy based on direct protein delivery to central nervous system (CNS) tissues. We fused Cre recombinase with cell-penetrating peptides and analyzed the intracellular biological activity of the resulting chimerical proteins when delivered into cells endowed with Cre-mediated reporter gene expression.  相似文献   

3.

Background  

Most conventional methods for delivering chemotherapeutic agents fail to achieve therapeutic concentrations of drugs, despite reaching toxic systemic levels. Novel controlled drug delivery systems are designed to deliver drugs at predetermined rates for predefined periods at the target organ and overcome the shortcomings of conventional drug formulations therefore could diminish the side effects and improve the life quality of the patients. Thus, a suitable controlled drug delivery system is extremely important for chemotherapy.  相似文献   

4.

Background  

The advancement of gene silencing via RNA interference is limited by the lack of effective short interfering RNA (siRNA) delivery vectors. Rational design of polymeric carriers has been complicated by the fact that most chemical modifications affect multiple aspects of the delivery process. In this work, the extent of primary amine acetylation of generation 5 poly(amidoamine) (PAMAM) dendrimers was studied as a modification for the delivery of siRNA to U87 malignant glioma cells.  相似文献   

5.

Background  

Protein instability remains the main factor limiting the development of protein therapeutics. The fragile nature (structurally and chemically) of proteins makes them susceptible to detrimental events during processing, storage, and delivery. To overcome this, proteins are often formulated in the solid-state which combines superior stability properties with reduced operational costs. Nevertheless, solid protein pharmaceuticals can also suffer from instability problems due to moisture sorption. Chemical protein glycosylation has evolved into an important tool to overcome several instability issues associated with proteins. Herein, we employed chemical glycosylation to stabilize a solid-state protein formulation against moisture-induced deterioration in the lyophilized state.  相似文献   

6.
Anti-tumor therapy with macroencapsulated endostatin producer cells   总被引:1,自引:0,他引:1  

Background  

Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors.  相似文献   

7.

Background  

Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells.  相似文献   

8.

Background  

Phosphatidylcholine (PPC) formulation is used for lipolytic injection, even though its mechanism of action is not well understood.  相似文献   

9.

Background

Transcutaneous immunization (TCI) approaches utilize skin associated lymphatic tissues to elicit specific immune responses. In this context, the imidazoquinoline derivative imiquimod formulated in Aldara applied onto intact skin together with a cytotoxic T lymphocyte (CTL) epitope induces potent CTL responses. However, the feasibility and efficacy of the commercial imiquimod formulation Aldara is limited by its physicochemical properties as well as its immunogenicity.

Methodology/Principal Findings

To overcome these obstacles, we developed an imiquimod-containing emulsion gel (IMI-Gel) and characterized it in comparison to Aldara for rheological properties and in vitro mouse skin permeation in a Franz diffusion cell system. Imiquimod was readily released from Aldara, while IMI-Gel showed markedly decreased drug release. Nevertheless, comparing vaccination potency of Aldara or IMI-Gel-based TCI in C57BL/6 mice against the model cytotoxic T-lymphocyte epitope SIINFEKL, we found that IMI-Gel was equally effective in terms of the frequency of peptide-specific T-cells and in vivo cytolytic activity. Importantly, transcutaneous delivery of IMI-Gel for vaccination was clearly superior to the subcutaneous or oral route of administration. Finally, IMI-Gel based TCI was at least equally effective compared to Aldara-based TCI in rejection of established SIINFEKL-expressing E.G7 tumors in a therapeutic setup indicated by enhanced tumor rejection and survival.

Conclusion/Significance

In summary, we developed a novel imiquimod formulation with feasible pharmaceutical properties and immunological efficacy that fosters the rational design of a next generation transcutaneous vaccination platform suitable for the treatment of cancer or persistent virus infections.  相似文献   

10.

Background  

In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria.  相似文献   

11.

Background  

Sensorineural hearing loss, a subset of all clinical hearing loss, may be correctable through the use of gene therapy. We are testing a delivery system of therapeutics through a 3 cell-layer round window membrane model (RWM model) that may provide an entry of drugs or genes to the inner ear. We designed an in vitro RWM model similar to the RWM (will be referred to throughout the paper as RWM model) to determine the feasibility of using superparamagnetic iron oxide (Fe3O4) nanoparticles (SPION) for targeted delivery of therapeutics to the inner ear.  相似文献   

12.
A multifunctional platform to deliver three diverse proteins of insulin, interferon beta (INF-β) and erythropoietin (EPO), using a novel copolymeric microparticulate system of TMC-PEGDMA-MAA, was synthesised as an intelligent pH-responsive 2-fold gastric and intestinal absorptive system. Physiochemical and physicomechanical studies proved the degree of crystallinity that supported the controlled protein delivery of the microparticulate system. The copolymer was tableted before undertaking in vitro and in vivo analysis. After 2.5 h in simulated gastric fluid (SGF), insulin showed a fractional release of 3.2% in comparison to simulated intestinal fluid (SIF), in which a maximum of 83% of insulin was released. Similarly, INF-β and EPO released 3 and 9.7% in SGF and a maximum of 74 and 81.3% in SIF, respectively. In vivo studies demonstrated a significant decrease in blood glucose by 54.19% within 4 h post-dosing, and the comparator formulation provided 74.6% decrease in blood glucose within the same time period. INF-β peak bioavailable dose in serum was calculated to be 1.3% in comparison to an SC formulation having a peak concentration of 0.9%, demonstrating steady-state release for 24 h. EPO-loaded copolymeric microparticles had a 1.6% peak bioavailable concentration, in comparison to the 6.34% peak concentration after 8 h from the SC comparator formulation.  相似文献   

13.

Background  

In recent years, different HIV antigens have been successfully expressed in plants by either stable transformation or transient expression systems. Among HIV proteins, Nef is considered a promising target for the formulation of a multi-component vaccine due to its implication in the first steps of viral infection. Attempts to express Nef as a single protein product (not fused to a stabilizing protein) in transgenic plants resulted in disappointingly low yields (about 0.5% of total soluble protein). In this work we describe a transient expression system based on co-agroinfiltration of plant virus gene silencing suppressor proteins in Nicotiana benthamiana, followed by a two-step affinity purification protocol of plant-derived Nef.  相似文献   

14.

Background  

Developmentally important genes often result in early lethality in knockout animals. Thus, the direct role of genes in late gestation organogenesis cannot be assessed directly. In utero delivery of transgenes was shown previously to result in high efficiency transfer to pulmonary and intestinal epithelial stem cells. Thus, this technology can be used to evaluate late gestation development.  相似文献   

15.

Background  

Understanding the endocytosis process of gold nanoparticles (AuNPs) is important for the drug delivery and photodynamic therapy applications. The endocytosis in living cells is usually studied by fluorescent microscopy. The fluorescent labeling suffers from photobleaching. Besides, quantitative estimation of the cellular uptake is not easy. In this paper, the size-dependent endocytosis of AuNPs was investigated by using plasmonic scattering images without any labeling.  相似文献   

16.

Background  

Somatropin is recombinant human growth hormone (GH) used for the treatment of growth failure in children and GH deficiency in adults. Two concentrations of a liquid formulation have been developed: 5.83 and 8.0 mg/mL. This trial compared the pharmacokinetics (PK), safety and tolerability of these two liquid concentrations against the freeze-dried (FD) formulation in healthy volunteers.  相似文献   

17.
Garg Y  Pathak K 《AAPS PharmSciTech》2011,12(2):673-682
The purpose of research was to develop a mucoadhesive multiparticulate sustained drug delivery system of pravastatin sodium, a highly water-soluble and poorly bioavailable drug, unstable at gastric pH. Mucoadhesive microparticles were formulated using eudragit S100 and ethyl cellulose as mucoadhesive polymers. End-step modification of w/o/o double emulsion solvent diffusion method was attempted to improve the purity of the product, that can affect the dose calculations of sustained release formulations and hence bioavailability. Microparticles formed were discrete, free flowing, and exhibited good mucoadhesive properties. DSC and DRS showed stable character of drug in microparticles and absence of drug polymer interaction. The drug to polymer ratio and surfactant concentration had significant effect on mean particle size, drug release, and entrapment efficiency. Microparticles made with drug: eudragit S100 ratio of 1:3 (F6) exhibited maximum entrapment efficiency of 72.7% and ex vivo mucoadhesion time of 4.15 h. In vitro permeation studies on goat intestinal mucosa demonstrated a flux rate (1,243 μg/cm2/h) that was 169 times higher than the flux of pure drug. The gastric instability problem was overcome by formulating the optimized microparticles as enteric-coated capsules that provided a sustained delivery of the highly water-soluble drug for 12 h beyond the gastric region. The release mechanism was identified as fickian diffusion (n = 0.4137) for the optimized formulation F6. Conclusively, a drug delivery system was successfully developed that showed delayed and sustained release up to 12 h and could be potentially useful to overcome poor bioavailability problems associated with pravastatin sodium.  相似文献   

18.

Background  

In this study, we have examined local non-viral gene delivery, transfection, and therapeutic efficacy of endothelial nitric oxide synthase (eNOS) encoding plasmid DNA administered using coated stents in a rabbit iliac artery restenosis model.  相似文献   

19.

Background  

Monocyte-derived macrophages contribute to atherosclerotic plaque formation. Therefore, manipulating macrophage function could have significant therapeutic value. The objective of this study was to determine transduction efficiency of two HIV-based lentiviral vector configurations as delivery systems for the transduction of primary human blood monocyte-derived macrophages.  相似文献   

20.
In situ gel-forming systems have drawn much attention of current researchers to overcome the poor bioavailability from the conventional eye drops. The present work described formulation and pharmacoscintigraphic evaluation of timolol-maleate-loaded chitosan/hydroxy propyl methyl cellulose (HPMC)-based polymer matrix for enhanced ocular retention. Chitosan and HPMC ratio was optimized and formulation was characterized for various in vitro parameters. The ocular retention was studied on New Zealand rabbits by gamma scintigraphy, which is a very simple and noninvasive technique. For scintigraphy study, the drug timolol maleate was radiolabeled 99mTc by direct labeling method using SnCl2·2H2O as reducing agent. The labeling procedure was optimized to get maximum labeling efficiency (>98%). In vitro stability of the radiolabeled drug (99mTc-timolol maleate complex) was checked and it was found to be stable for up to 24 h. Plain drug eliminates rapidly as significant activity was recorded in kidney and bladder after 2 h of ocular administration. It was evident from the scintigraphic images and the time–activity curve plotted from the data that the plain drug solution cleared very rapidly from the corneal region and reached into systemic circulation via nasolachrymal drainage system, as significant activity was recorded in kidney and bladder after 2 h of ocular administration. Developed formulation cleared at a slow rate and remained at corneal surface for longer time duration. No radioactivity was observed in systemic circulation after 2 h. Ocular irritation of the developed formulation was also checked by hen’s egg chorioallantoic membrane test and formulation was found to be practically nonirritant. The study signified the potential of gamma scintigraphy in evaluation of novel drug delivery systems in a noninvasive manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号