首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We compared the virulence of the entomopathogenic nematodes Steinernema scarabaei, Heterorhabditis zealandica, and Heterorhabditis bacteriophora (GPS11 and TF strains) against third instars of the Japanese beetle, Popillia japonica, the oriental beetle, Anomala (=Exomala) orientalis, the northern masked chafer, Cyclocephala borealis, the European chafer, Rhizotrogus majalis, and the Asiatic garden beetle, Maladera castanea, in laboratory and greenhouse experiments. The virulence of the nematode species relative to each other differed greatly among white grub species. H. bacteriophora and H. zealandica had similar modest virulence to P. japonica, A. orientalis, C. borealis, and M. castanea. But against R. majalis, H. zealandica showed low virulence with a clear concentration response whereas H. bacteriophora caused only erratic and very low mortality. In contrast, S. scarabaei had modest virulence against C. borealis, but was highly virulent against R. majalis, P. japonica, A. orientalis, and M. castanea with R. majalis being the most susceptible and M. castanea the least susceptible.  相似文献   

2.
To better understand the differences in the efficacy of entomopathogenic nematode species against white grub species, we are studying the various steps of the infection process of entomopathogenic nematodes into different white grub species using nematode species/strains with particular promise as white grub control agents. In this study we compared the attraction of the entomopathogenic nematodes Steinernema scarabaei (AMK001 strain), Steinernema glaseri (NC1 strain), Heterorhabditis zealandica (X1 strain), and Heterorhabditis bacteriophora (GPS11 strain) to third-instars of the scarabs Popillia japonica, Anomala orientalis, Cyclocephala borealis, and Rhizotrogus majalis, and late-instar greater wax moth, Galleria mellonella, larvae. Individual larvae were confined at the bottom of 5.5 cm vertical sand columns, nematodes added to the sand surface after 24 h, and nematodes extracted after another 24 h. Nematode attraction to hosts was strongly affected by nematode species but the effect of insect species varied with nematode species. S. glaseri had a high innate dispersal rate (i.e., in absence of insects) and was strongly attracted to insects without significant differences among insect species. S. scarabaei had a very low innate dispersal rate so that even a strong relative response to insects resulted in low absolute dispersal rates toward insects. S. scarabaei tended to be most attracted to G. mellonella and least attracted to C. borealis. H. zealandica had a high innate dispersal rate but only responded weakly to insects without significant differences among species. H. bacteriophora had limited innate dispersal and only weakly responded to insects with G. mellonella tending to be the most attractive and C. borealis the least attractive insect. It has to be noted that we cannot exclude that the use of different rearing hosts (A. orientalis and P. japonica larvae for S. scarabaei, G. mellonella larvae for the other nematodes) might have had an impact on the nematodes dispersal and relative attraction behavior. This study indicates that host attractiveness and nematode dispersal rates may contribute but do not play a major role in the variability in white grub susceptibility and/or nematode virulence.  相似文献   

3.
Because susceptibility of white grub species to entomopathogenic nematodes differs, we compared the virulence of Photorhabdus temperata and Xenorhabdus koppenhoeferi, the symbiotic bacteria of the nematodes Heterorhabditis bacteriophora and Steinernema scarabaei, respectively, to the three white grub species, Popillia japonica, Rhizotrogus majalis, and Cyclocephala borealis. Both bacteria were pathogenic to all three grub species even at 2 cells/grub. However, the median lethal dose at 48 h post injection and median lethal time at 20 cells/grub showed that P. temperata was more virulent than X. koppenhoeferi to C. borealis. Although H. bacteriophora is less pathogenic than S. scarabaei to R. majalis and P. japonica, their symbiotic bacteria did not differ in virulence against these two grub species, and they also showed similar growth patterns both in vitro and inside R. majalis larvae at 20 °C. We then tested the pathogenicity of oral- and intrahemocoel-introduced H. bacteriophora to R. majalis to determine whether nematodes are able to successfully vector the bacteria into the hemolymph. Hemocoel injected H. bacteriophora was pathogenic to R. majalis indicating successful bacterial release, but orally introduced H. bacteriophora were not. Dissection of grubs confirmed that the orally introduced H. bacteriophora were unable to penetrate into the hemolymph through the gut wall. We conclude that the low susceptibility of R. majalis to H. bacteriophora is not due to the symbiotic bacteria but rather to the nematode’s poor ability to penetrate through the gut wall and the cuticle to vector the bacteria into the hemolymph.  相似文献   

4.
A new entomopathogenic nematode species, Steinernema scarabaei, was evaluated for efficacy against two white grub species, the European chafer, Rhizotrogus majalis, and the Japanese beetle, Popillia japonica, in laboratory, greenhouse, and field trials. In laboratory assays, S. scarabaei caused greater mortality than Heterorhabditis bacteriophora. S. scarabaei was highly virulent with an LC50 of 5.5–6.0 and 5.7 infective juveniles (IJs) per third-instar larva in R. majalis and P. japonica, respectively. In a greenhouse trial, S. scarabaei provided greater mortality of R. majalis at all application rates (0.156–1.25 × 109 IJs/ha) than Steinernema glaseri and H. bacteriophora (both at 1.25 × 109 IJs/ha). Combination of imidacloprid and S. scarabaei resulted in an antagonistic interaction. In a fall field trial, S. scarabaei provided 88 and 75% control of R. majalis at 2.5 × 109 and 109 IJs/ha, respectively, and 54% control of P. japonica at 109 IJs/ha; H. bacteriophora had no effect on mortality of either white grub species. In a spring field trial, unusually cool temperatures impeded nematode activity. Against R. majalis, S. scarabaei provided moderate control (56–59%), whereas Heterorhabditis marelatus provided no control. Mortality of P. japonica was moderate (49–66%) in both S. scarabaei and H. marelatus treatments. Overwinter persistence of S. scarabaei activity was demonstrated in a spring assay of soil from fall treated plots in which nematode infection was absent from control plots and present in treated plots.  相似文献   

5.
In previous greenhouse studies, the insecticide imidacloprid and the entomopathogenic nematode Heterorhabditis bacteriophora Poinar interacted synergistically against third instars of the masked chafers Cyclocephala hirta LeConte and C. pasadenae Casey (Coleoptera: Scarabaeidae). We tested this interaction for two additional nematode species and three additional scarab species under field conditions. In greenhouse tests, H. bacteriophora and Steinernema glaseri (Steiner) interacted synergistically against third instars of the Japanese beetle, Popillia japonica Newman, the oriental beetle, Exomala orientalis Waterhouse, and the masked chafers Cyclocephala borealis Arrow, C. pasadenae, and C. hirta. The degree of interaction varied with nematode species. The strongest synergism occurred between imidacloprid and S. glaseri. Synergism between imidacloprid and H. bacteriophora was weaker and the interaction was not always significant. Combinations of imidacloprid and S. kushidai Mamiya only resulted in additive mortality. The synergistic interaction was also observed in field trials but the results were more variable than those under greenhouse conditions. The combination of nematodes and imidacloprid could be used for curative treatments of white grub infestations, especially against scarab species that are less susceptible to nematodes and/or imidacloprid. This combination has a low environmental impact and high compatibility with natural biological control of turfgrass insects. The possible roles of these combinations in augmentative control approaches are discussed.  相似文献   

6.
Entomopathogenic nematodes and the chloronicotinyl insecticide, imidacloprid, interact synergistically on the mortality of third-instar white grubs (Coleoptera: Scarabaeidae). The degree of interaction, however, varies with nematode species, being synergistic for Steinernema glaseri (Steiner) and Heterorhabditis bacteriophora Poinar, but only additive for Steinernema kushidai Mamiya. The mechanism of the interaction between imidacloprid and these three entomopathogenic nematodes was studied in the laboratory. In vials with soil and grass, mortality, speed of kill, and nematode establishment were negatively affected by imidacloprid with S. kushidai but positively affected with S. glaseri and H. bacteriophora. In all other experiments, imidacloprid had a similar effect for all three nematode species on various factors important for the successful nematode infection in white grubs. Nematode attraction to grubs was not affected by imidacloprid treatment of the grubs. Establishment of intra-hemocoelically injected nematodes was always higher in imidacloprid-treated grubs but the differences were small and in most cases not significant. The major factor responsible for synergistic interactions between imidacloprid and entomopathogenic nematodes appears to be the general disruption of normal nerve function due to imidacloprid resulting in drastically reduced activity of the grubs. This sluggishness facilitates host attachment of infective juvenile nematodes. Grooming and evasive behavior in response to nematode attack was also reduced in imidacloprid-treated grubs. The degree to which different white grub species responded to entomopathogenic nematode attack varied considerably. Untreated Popillia japonica Newman (Coleoptera: Scarabaeidae) grubs were the most responsive to nematode attack among the species tested. Untreated Cyclocephala borealis Arrow (Coleoptera: Scarabaeidae) grubs showed a weaker grooming and no evasion response, and untreated C. hirta LeConte (Coleoptera: Scarabaeidae) grubs showed no significant response. Chewing/biting behavior was significantly increased in the presence of nematodes in untreated P. japonica and C. borealis but not in C. hirta and imidacloprid-treated P. japonica and C. borealis. Our observations, however, did not provide an explanation for the lack of synergism between imidacloprid and S. kushidai.  相似文献   

7.
Field and laboratory tests were conducted from 2001 through 2007 to assess the effectiveness of entomopathogenic nematode Heterorhabditis bacteriophora strain GPS11 applications targeted against different instars of the Japanese beetle, Popillia japonica. During summer flight, P. japonica adults were trapped and caged on turfgrass plots for oviposition. Larval development was monitored for the occurrence of each instar. Nematodes were applied in the field against each developing instar at 2.5 × 109 infective juveniles/ha. In 2001, field data obtained in October resulted in 75%, 53%, and 33% control with the applications targeted against the first, second, and third instars, 69, 28, and 9 days after treatment (DAT), respectively. In 2002 field trial, data obtained in October indicated 97%, 88%, and 0% control when the applications were targeted against the first, second, and third instars at 66, 43, and 14 DAT, respectively. Additional plots established in 2002 to determine efficacy against each instar at 14 DAT showed control of the first, second, and third instars to be 55%, 53%, and 0%, respectively. In laboratory tests conducted in 2002, 2004, and 2007, P. japonica collected from the field at the occurrence of each instar were exposed to H. bacteriophora at concentrations of 0, 10, 33, 100, 330, or 1000 infective juveniles/grub. Probit analysis of the mortality from three of the four sets of tests conducted showed the first instar to be significantly more susceptible to H. bacteriophora than the third instar at the LC50 level and all tests showed the first instar to be significantly more susceptible than the third instar at the LC90 level. In addition to the observed decrease in the third instar susceptibility to H. bacteriophora, soil temperatures in the mid-western United States during late September and October rapidly decline often reaching below 15 °C by the beginning of October when grubs are in the third instar stage of development. Therefore, we conclude that the applications of the nematodes made in August or September will provide higher control than those made in October, due to the more appropriate temperature for nematode activity and the presence of more susceptible larval stages. Early nematode applications may also provide an opportunity for nematodes to recycle and cause secondary infections.  相似文献   

8.
The potential of entomopathogenic nematodes, Heterorhabditis bacteriophora, Heterorhabditis zealandica and Steinernema khoisanae, to infect pupariating larvae, pupae and adults of Ceratitis capitata and Ceratitis rosa was investigated in laboratory bioassays. Pupariating larvae and adult flies were susceptible to nematode infection, with no infection recorded for the pupae. Pupariating larvae of C. capitata were generally more susceptible to infection than those of C. rosa. Significantly more larvae of C. capitata were infected by H. bacteriophora. For C. rosa, highest infectivity of larvae was obtained with H. zealandica. In contrast, adults of both species were highly infected by S. khoisanae.  相似文献   

9.
We tested the effect of host density on entomopathogenic nematode efficacy in 1-L pots with grass and soil. In four experiments, combinations ranged from somewhat resistant hosts (oriental beetle, Anomala orientalis, or northern masked chafer, Cyclocephala borealis, with Heterorhabditis bacteriophora) over more susceptible hosts (Japanese beetle, Popillia japonica, with Steinernema glaseri) to a highly susceptible host (P. japonica and S. scarabaei). In each experiment, four larval densities were exposed to two nematode rates over a 14-day period. A significant effect of host density on nematode efficacy occurred only in the A. orientalis–H. bacteriophora combination, but there was no clear trend in the data. This suggests that an exhaustion of available nematode populations to less lethal levels by high host numbers was counteracted by other factors such as increased chances for nematode-host contact and increased host susceptibility due to stress via reduced food resources and increased aggression between larvae.  相似文献   

10.
Four entomopathogenic nematode species, Steinernema carpocapsae, S. feltiae, Heterorhabditis bacteriophoraand H. megidis, were tested in a petri dish assay against larvae and adults of the hairy fungus beetle Typhaea stercorea. In general, adults were less susceptible than larvae and the LC50 decreased with the duration of the exposure to nematodes. S. carpocapsae was the most effective species against adult beetles (LC50 after 96 hours exposure =67 nematodes/adult). Against larvae S.carpocapsae and H. megidis were comparablyeffective with an LC50 of 30 and 55nematodes/larvae, respectively. S. carpocapsaewas tested at 70 and 100% RH against adults in baits of either chicken feed or crushed wheat, both supplemented with horticultural capillary matting pieces in order to obtain a wet weight of 50–60%. At70% RH no significant effect of the nematodes was obtained due to desiccation of the bait. In chickenfeed at 100% RH the mortality reached 80% with 500nematodes/adult. In wheat significant mortality was obtained only at 5000 nematodes/adult. Heavy growth of mould probably limited the nematode infection. When the bait was used in tube traps, desiccation and growth of mould was prevented, but nematode efficacy dropped to 4.4% in the traps and 12% in the surrounding litter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The guava weevil, Conotrachelus psidii, is a major pest of guava in Brazil and causes severe reduction in fruit quality. This weevil is difficult to control with insecticides because adults emerge over a long period, and larvae develop to the fourth-instar inside the fruit and move to the soil for pupation. We assessed the virulence of entomopathogenic nematodes to fourth-instar larvae in soil by comparing their susceptibility to nine species or strains: Heterorhabditis bacteriophora HP88, H. baujardi LPP7, and LPP1, H. indica Hom1, Steinernema carpocapsae All and Mexican, S. feltiae SN, S. glaseri NC, and S. riobrave 355. In petri dish assays with sterile sand at a concentration of 100 infective juveniles (IJs) of a given nematode species/strain, larval mortality ranged from 33.5 to 84.5%, with the heterorhabditids being the most virulent. In sand column assays with H. baujardi LPP7, H. indica Hom1, or S. riobrave 355 at concentrations of 100, 200, and 500 IJs, mortality was greater than the control only for H. baujardi (62.7%) and H. indica (68.3%) at the highest concentration. For H. baujardi LPP7 in a petri dish assay, the time required to kill 50 and 90% of the larvae (LT50 and LT90) for 100 IJs was 6.3 and 9.9 days, whereas the lethal concentration required to kill 50 and 90% of the larvae (LC50 and LC90) over 7 days was 52 and 122.2 IJs. In a greenhouse study with guava trees in 20-L pots, 10 weevil larvae per pot, and concentrations of 500, 1000 or 2000 IJs, H. baujardi LPP7 caused 30 and 58% mortality at the two highest concentrations. These results show that H. baujardi is virulent to fourth-instar larvae and has potential as a biological control agent in IPM programs.  相似文献   

12.
We evaluated tritrophic level interactions among fungal endophytes (Acremonium spp.) of fescue grasses (Festuca spp.), the root-feeding Japanese beetlePopillia japonica Newman larvae, and the entomopathogenic nematodeHeterorhabditis bacteriophora Poinar. Third-instarP. japonica larvae were introduced into pots containing endophyteinfected or endophyte-free plants of tall fescueFestuca arundinacea Schreber (cultivars Kentucky 31 and Georgia Jesup Improved) and the Chewings fescueFestuca rubra commutata Guad. (cultivars F-93 and Jamestown II). After two weeks, the surviving larvae were recovered, and their susceptibility to nematodes was evaluated in sand columns. Endophytes enhanced the rate of nematode-induced mortality in all cultivars except Georgia Jesup Improved, and increased the proportion of dead larvae with nematodes in all cultivars except Jamestown II. Endophytes in the cultivar Kentucky 31 were associated with improved nematode establishment in the larvae. No effect on nematode reproduction was found. Since endophytes produce biologically active alkaloids, we tested the effects of an ergot alkaloid, ergotamine tartrate, on the feeding behavior and weight ofP. japonica larvae in agar medium. The alkaloid caused feeding deterrence, and reduced the consumption of medium by the larvae, resulting in weight loss. These larvae were more susceptible toH. bacteriophora than the untreated larvae. Unfed ‘starved’ larvae were more susceptible to nematodes than those fed on untreated agar. Our results support the hypothesis that endophyte-induced starvation ofP. japonica would reduce larval vigor, and render them more susceptible to entomopathogenic nematodes.  相似文献   

13.
Entomopathogenic nematodes (EPNs) from the families Steinernematidae and Hererorhabditidae are considered excellent biological control agents against many insects that damage the roots of crops. In a regional survey, native EPNs were isolated, and laboratory and greenhouse experiments were conducted to determine the infectivity of EPNs against the cucurbit fly, Dacus ciliatus Loew (Diptera: Tephritidae). Preliminary experiments showed high virulence by a native strain of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae) and a commercial strain of Steinernema carpocapsae Weiser (Rhabditida: Steinernematidae). These two strains were employed for further analysis while another native species, Steinernema feltiae, was excluded due to low virulence. In laboratory experiments, larvae and adult flies were susceptible to nematode infection, but both nematode species induced low mortality on pupae. S. carpocapsae had a significantly lower LC50 value against larvae than H. bacteriophora in filter paper assays. Both species of EPNs were effective against adult flies but S. carpocapsae caused higher adult mortality. When EPN species were applied to naturally infested fruit (150 and 300 IJs/cm2), the mortality rates of D. ciliatus larvae were 28% for S. carpocapsae and 12% for H. bacteriophora. Both EPN strains successfully reproduced and emerged from larvae of D. ciliates. In a greenhouse experiment, H. bacteriophora and S. carpocapsae had similar effects on fly larvae. Higher rates of larval mortality were observed in sandy loam and sand soils than in clay loam. The efficacy of S. carpocapsae and H. bacteriophora was higher at 25 and 30°C than at 19°C. The results indicated that S. carpocapsae had the best potential as a biocontrol agent of D. ciliatus, based on its higher virulence and better ability to locate the fly larvae within infected fruits.  相似文献   

14.
Biological control potential of nine entomopathogenic nematodes, Heterorhabditis bacteriophora CLO51 strain (HbCLO51), H. megidis VBM30 strain (HmVBM30), H. indica, Steinernema scarabaei, S. feltiae, S. arenarium, S. carpocapsae Belgian strain (ScBE), S. glaseri Belgian strain (SgBE) and S. glaseri NC strain (SgNC), was tested against second-, and third-instar larvae and pupae of Hoplia philanthus in laboratory and greenhouse experiments. The susceptibility of the developmental stages of H. philanthus differed greatly among tested nematode species/strains. In the laboratory experiments, SgBE, SgNC, HbCLO51 and HmVBM30 were highly virulent to third-instar larvae and pupae while SgBE was only virulent to second-instar larvae. Pupae were highly susceptible to HbCLO51, HmVBM30, SgBE and SgNC (57–100%) followed by H. indica and S. scarabaei (57–76%). In pot experiments, HbCLO51, SgBE and S. scarabaei were highly virulent to the third-instar larvae compared to the second-instar larvae. Our observations, combined with those of previous studies on other nematode and white grub species, show that nematode virulence against white grub developmental stages varies with white grub and nematode species.  相似文献   

15.
In 2014, the Japanese beetle Popillia japonica (Coleoptera: Scarabaeidae) was first spotted in northern Italy in the Nature Park of the Ticino Valley, its first detection in continental Europe. This polyphagous invasive species has the potential to cause serious losses to horticulture and agriculture. Particularly for its management in a Nature Park, environmentally friendly strategies are necessary. To develop baseline data for a biological control approach to the Italian outbreak of P. japonica, we conducted laboratory and field experiments testing several indigenous and commercial strains of the entomopathogenic nematode (EPN) species Heterorhabditis bacteriophora and Steinernema carpocapsae against P. japonica larvae. In the laboratory, strains of H. bacteriophora caused greater mortality (ranging from 57% to 100%) than those of S. carpocapsae (3% to 77%). In micro‐plot field tests carried out at three different times, the most virulent indigenous EPN strain, H. bacteriophora ItH‐LU1, showed again the best results ranging from 44% to 93% against young larvae. Finally, in a large‐plot field trial, the commercial H. bacteriophora product provided 46% larval mortality. This study shows that H. bacteriophora strains have good potential as biological control agents of larvae of the invasive P. japonica in northern Italy.  相似文献   

16.
The effect of five commercial potting media, peat, bark, coir, and peat blended with 10% and 20% compost green waste (CGW) on the virulence of six commercially available entomopathogenic nematodes (EPN), Heterorhabditis bacteriophora UWS1, Heterorhabditis megidis, Heterorhabditis downesi, Steinernema feltiae, Steinernema carpocapsae, and Steinernema kraussei was tested against third-instar black vine weevil (BVW), Otiorhynchus sulcatus. Media type was shown to significantly affect EPN virulence. Heterorhabditis species caused 100% larval mortality in all media whereas Steinernema species caused 100% larval mortality only in the peat blended with 20% CGW. A later experiment investigated the effect of potting media on the virulence of EPN species against BVW by comparing the vertical dispersal of EPN in the presence and absence of BVW larva. Media type significantly influenced EPN dispersal. Dispersal of H. bacteriophora was higher than H. megidis, H. downesi, or S. kraussei in all media, whereas, S. feltiae and S. carpocapsae dispersal was much reduced and restricted to peat blended with 20% CGW and coir, respectively. In the absence of larvae, most of the EPN species remained in the same segment they were applied in, suggesting that the larvae responded to host volatile cues. Greenhouse trials were conducted to evaluate the efficacy of most virulent strain, H. bacteriophora in conditions more representative of those in the field, using 2.5 × 109 infective juveniles/ha. The efficacy of H. bacteriophora UWS1 against third-instar BVW was 100% in peat, and peat blended with 10% and 20% CGW but only 70% in bark and coir, 2 weeks after application. These studies suggest that potting media significantly affects the efficacy and dispersal of EPN for BVW control.  相似文献   

17.
Our objective was to estimate the biocontrol potential of the recently discovered entomopathogenic nematode species Heterorhabditis georgiana (Kesha strain). Additionally, we conducted a phylogenetic characterization of the nematode’s symbiotic bacterium. In laboratory experiments, we compared H. georgiana to other entomopathogenic nematodes for virulence, environmental tolerance (to heat, desiccation, and cold), and host seeking ability. Virulence assays targeted Acheta domesticus, Agrotis ipsilon, Diaprepes abbreviatus, Musca domestica, Plodia interpunctella, Solenopsis invicta, and Tenebrio molitor. Each assay included H. georgiana and five or six of the following species: Heterorhabditis floridensis, Heterorhabditis indica, Heterorhabditis mexicana, Steinernema carpocapsae, Steinernema feltiae, Steinernema rarum, and Steinernema riobrave. Environmental tolerance assays included Heterorhabditis bacteriophora, H. georgiana, H. indica, S. carpocapsae, S. feltiae, and S. riobrave (except cold tolerance did not include S. carpocapsae or S. riobrave). Host seeking ability was assessed in H. bacteriophora, H. georgiana, S. carpocapsae, and Steinernema glaseri, all of which showed positive orientation to the host with S. glaseri having greater movement toward the host than S. carpocapsae (and the heterorhabditids being intermediate). Temperature range data (tested at 10, 13, 17, 25, 30 and 35 °C) indicated that H. georgiana can infect Galleria mellonella between 13 and 35 °C (with higher infection at 17–30 °C), and could reproduce between 17 and 30 °C (with higher nematode yields at 25 °C). Compared with other nematode species, H. georgiana expressed low or intermediate capabilities in all virulence and environmental tolerance assays indicating a relatively low biocontrol potential. Some novel observations resulted from comparisons among other species tested. In virulence assays, H. indica caused the highest mortality in P. interpunctella followed by S. riobrave; S. carpocapsae caused the highest mortality in A. domesticus followed by H. indica; and S. riobrave was the most virulent nematode to S. invicta. In cold tolerance, S. feltiae exhibited superior ability to cause mortality in G. mellonella (100%) at 10 °C, yet H. bacteriophora and H. georgiana exhibited the ability to produce attenuated infections at 10 °C, i.e., the infections resumed and produced mortality at 25 °C. In contrast, H. indica did not show an ability to cause attenuated infections. Based on the phylogenetic analysis, the bacterium associated with H. georgiana was identified as Photorhabdus luminescens akhurstii.  相似文献   

18.
Three species of entomopathogenicnematodes, a combination of two nematodespecies, an entomopathogenic fungal species,and a combination of a nematode and fungalspecies were evaluated against the white grubsEctinohoplia rufipes and Exomalaorientalis (Coleoptera: Scarabaeidae) in the field. The nematodes were acommercial formulation of Steinernemacarpocapsae (BioSafe) and S. glaseri from Dongrae and from Hanrim, and Heterorhabditis bacteriophora from Hamyang,Republic of Korea. The entomopathogenic funguswas Beauveria brongniartii, produced onSabouraud maltose agar plus 1% yeast (SMAY),rice bran, or compost. The combinationtreatment was S. carpocapsae with H.bacteriophora or B. brongniartii. Fieldapplications were made in August or Septemberagainst third instars at a golf course infestedwith E. rufipes in Gyeongnam Province in1991, and one in Pusan with E. orientalisin 1992 and 1993. In 1991, a significantreduction of 70.2 to 79.4% of E. rufipeslarvae was observed in the nematode, fungal andchemical (fenitrothion) treatments comparedwith a 15.7% reduction in the control. In1992, the E. orientalis larval populationwas reduced between 62.7 and 82.8% in thetreatments compared to 10.7% in the control.In 1993, larval reductions in plots treatedwith nematodes (78.3 to 97%) and B.brongniartii propagated on rice bran (84.5%)were significantly better than in plots treatedwith B. brongniartii propagated on SMAY(63.6%) or compost (59.6%). Combining twonematode species did not enhance the efficacycompared to treatments with one nematodespecies alone, but combining S.carpocapsae with B. brongniartiiproduced on SMAY resulted in a significantincrease in grub mortality over the applicationof the fungus alone produced on SMAY orcompost. The high efficacy of the nematode andmost fungal treatments was attributed to theclose proximity of the white grubs to the soilsurface which allowed for excellentpathogen-host contact and to favorable soiltemperatures, sandy soil, post irrigationapplication and/or rain and a minimal thatchlayer in the turfgrass.  相似文献   

19.
Rose sawfly, Arge ochropus (Gmelin), is one of the most important pests of ornamental plants such as roses and wild rose bushes in Northern Iran. We investigated the interactions between the insecticides imidacloprid and the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae as control agents of fifth-instar larvae in the laboratory. The larvae were very susceptible to S. carpocapsae (LC50: 21 infective juvenile per larva) and H. bacteriophora (LC50: 32). Combinations of two imidacloprid rates (LC30 and LC50) and four rates of each nematode species (LC25–LC75) were tested. Combinations with the lower imidacloprid rate except for that with the highest H. bacteriophora rate caused higher mortality than both respective single-agent treatments. In combination with the higher imidacloprid rate, only one combination with H. bacteriophora and two combinations with S. carpocapsae caused higher mortality than both respective single-agent treatments. Interactions were generally stronger at the lower imidacloprid rate and were stronger for S. carpocapsae (synergistic in seven combinations, additive in one) than for H. bacteriophora (synergistic in two, additive in six). Synergistic imidacloprid-S. carpocapsae combinations could be a useful tool for the control of A. ochropus larvae that would simultaneously control other common pests susceptible to imidacloprid.  相似文献   

20.
A series of laboratory and greenhouse experiments evaluated the entomopathogenic nematodes Steinernema scarabaei Stock & Koppenhöfer, Heterorhabditis bacteriophora Poinar, and H. zealandica Poinar for control of second- and third-instar cranberry white grub, Phyllophaga georgiana Horn (Coleoptera: Scarabaeidae), in cranberries. Steinernema scarabaei was the most effective species with 76–100% control at a rate of 2.5×109 IJ/ha in the greenhouse experiments. H. zealandica and especially H. bacteriophora were generally less effective and required rates of 5×109 IJ/ha for acceptable control. Larval stage had no effect on H. zealandica and H. bacteriophora performance, whereas S. scarabaei was more effective against third instars than second instars in the laboratory but not in the greenhouse experiments. Steinernema scarabaei, should it become commercially available, could be an effective alternative to chemical insecticides for P. georgiana management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号