首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
同源框基因是指一类含有同源序列的基因,它编码的蛋白质作为转录调节因子调节细胞的发育和分化,控制基因的表达形式。LIM同源框基因不仅含有同源框基因也含有编码LIM结构域的保守序列。  相似文献   

2.
Early evolution of the MFT-like gene family in plants   总被引:1,自引:0,他引:1  
Angiosperm genes sharing a conserved phosphatidylethanolamine-binding (PEPB) domain have been shown to be involved in the control of shoot meristem identity and flowering time. The family is divided into three subfamilies, FT-like, TFL1-like and MFT-like. This study is focused on the evolution of the MFT-like clade, suggested to be ancestral to the two other clades. We report that the bryophyte Physcomitrella patens and the lycopod Selaginella moellendorfii contain four and two MFT-like genes respectively. Neither species have any FT or TFL1-like genes. Furthermore, we have identified a new subclade of MFT-like genes in Angiosperms. Quantitative expression analysis of MFT-like genes in Physcomitrella patens reveals that the expression patterns are circadian and reaches maximum in gametangia and sporophytes. Our data suggest that the occurrence FT and TFL1-like genes, is associated with the evolution of seed plants. Expression data for Physcomitrella MFT-like genes implicates an involvement in the development of reproductive tissues in the moss.  相似文献   

3.
4.
5.
6.
Msx homeobox gene family and craniofacial development   总被引:9,自引:0,他引:9  
Alappat S  Zhang ZY  Chen YP 《Cell research》2003,13(6):429-442
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice.  相似文献   

7.
Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time‐ and site‐specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. J. Cell. Physiol. 223:779–787, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
Once called the 'Rosetta stone' of developmental biology, the homeobox continues to fascinate both evolutionary and developmental biologists. The birth of the homeotic, or Hox, gene cluster, and its subsequent evolution, has been crucial in mediating the major transitions in metazoan body plan. Comparative genomics studies indicate that the more recently discovered ParaHox and NK clusters were linked to the Hox cluster early in evolution, and that together they constituted a 'megacluster' of homeobox genes that conspicuously contributed to body-plan evolution.  相似文献   

10.
The egg-laying system of Caenorhabditis elegans hermaphrodites requires development of the vulva and its precise connection with the uterus. This process is regulated by LET-23-mediated epidermal growth factor signaling and LIN-12-mediated lateral signaling pathways. Among the nuclear factors that act downstream of these pathways, the LIM homeobox gene lin-11 plays a major role. lin-11 mutant animals are egg-laying defective because of the abnormalities in vulval lineage and uterine seam-cell formation. However, the mechanisms providing specificity to lin-11 function are not understood. Here, we examine the regulation of lin-11 during development of the egg-laying system. Our results demonstrate that the tissue-specific expression of lin-11 is controlled by two distinct regulatory elements that function as independent modules and together specify a wild-type egg-laying system. A uterine pi lineage module depends on the LIN-12/Notch signaling, while a vulval module depends on the LIN-17-mediated Wnt signaling. These results provide a unique example of the tissue-specific regulation of a LIM homeobox gene by two evolutionarily conserved signaling pathways. Finally, we provide evidence that the regulation of lin-11 by LIN-12/Notch signaling is directly mediated by the Su(H)/CBF1 family member LAG-1.  相似文献   

11.
12.
In Caenorhabditis elegans three pairs of neurons, AFD, AIY, and AIZ, play a key role in thermosensation. The LIM homeobox gene ceh-14 is expressed in the AFD thermosensory neurons. ceh-14 mutant animals display athermotactic behaviors, although the neurons are still present and differentiated. Two other LIM homeobox genes, ttx-3 and lin-11, function in the two interneurons AIY and AIZ, respectively. Thus, the three key thermosensory neurons are specified by three different LIM homeobox genes. ceh-14 ttx-3 lin-11 triple mutant animals have a basic cryophilic thermotaxis behavior indicative of a second thermotaxis pathway. Misexpression of ceh-14 in chemosensory neurons can restore thermotactic behavior without impairing the chemosensory function. Thus, ceh-14 confers thermosensory function to neurons.  相似文献   

13.

Background

LIM (Lin-11, Isl-1 and Mec-3 domains) genes have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly, in higher plants; however, the stress resistance related functions of these genes are still not well known. In this study, we collected 22 LIM genes designated as Brassica rapa LIM (BrLIM) from the Brassica database, analyzed the sequences, compared them with LIM genes of other plants and analyzed their expression after applying biotic and abiotic stresses in Chinese cabbage.

Results

Upon sequence analysis these genes were confirmed as LIM genes and found to have a high degree of homology with LIM genes of other species. These genes showed distinct clusters when compared to other recognized LIM proteins upon phylogenetic analysis. Additionally, organ specific expression of these genes was observed in Chinese cabbage plants, with BrPLIM2a, b, c, BrDAR1, BrPLIM2e, f and g only being expressed in flower buds. Furthermore, the expression of these genes (except for BrDAR1 and BrPLIM2e) was high in the early flowering stages. The remaining genes were expressed in almost all organs tested. All BrDAR genes showed higher expression in flower buds compared to other organs. These organ specific expressions were clearly correlated with the phylogenetic grouping. In addition, BrWLIM2c and BrDAR4 responded to Fusarium oxysporum f. sp. conglutinans infection, while commonly two BrDARs and eight BrLIMs responded to cold, ABA and pH (pH5, pH7 and pH9) stress treatments in Chinese cabbage plants.

Conclusion

Taken together, the results of this study indicate that BrLIM and BrDAR genes may be involved in resistance against biotic and abiotic stresses in Brassica.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-641) contains supplementary material, which is available to authorized users.  相似文献   

14.
Gene families are widely used in comparative genomics, molecular evolution, and in systematics. However, they are constructed in different manners, their data analyzed and interpreted differently, with different underlying assumptions, leading to sometimes divergent conclusions. In systematics, concepts like monophyly and the dichotomy between homoplasy and homology have been central to the analysis of phylogenies. We critique the traditional use of such concepts as applied to gene families and give examples of incorrect inferences they may lead to. Operational definitions that have emerged within functional genomics are contrasted with the common formal definitions derived from systematics. Lastly, we question the utility of layers of homology and the meaning of homology at the character state level in the context of sequence evolution. From this, we move forward to present an idealized strategy for characterizing gene family evolution for both systematic and functional purposes, including recent methodological improvements.  相似文献   

15.
Dlx homeobox genes of vertebrates are often organised as physically linked pairs in which the two genes are transcribed convergently (tail-to-tail arrangement). Three such Dlx pairs have been found in mouse, human, and zebrafish and are thought to have originated from the duplication of an ancestral gene pair. These pairs include Dlx1/Dlx2, Dlx7/Dlx3, and Dlx6/Dlx5 (the zebrafish orthologue of Dlx5 is named dlx4). Expression patterns of physically linked Dlx genes overlap extensively. Furthermore, orthologous Dlx genes often show highly similar expression patterns. We analysed Dlx expression during the gastrula and early somitogenesis of the mouse and zebrafish. It was found that expression of the mouse Dlx6 gene takes place in the rostral ectoderm and presumptive olfactory and otic placodes with patterns similar to the previously reported expression of the physically linked Dlx5 gene. However, we observed only very weak expression of the mouse Dlx3 gene at the same stage. This contrasts with the expression of dlx genes in zebrafish where dlx3 and dlx7, but not dlx4 and dlx6 are expressed during gastrulation in the rostral ectoderm and presumptive placodes. Thus, Dlx expression patterns at early stages are better conserved between paralogous pairs of physically linked genes than between orthologous pairs. This suggests that early expression of Dlx genes existed prior to the duplications that led to the multiple pairs of physically linked genes but was differentially conserved in different paralogs in zebrafish and mice.  相似文献   

16.
Molecular evolution of the synapsin gene family   总被引:4,自引:0,他引:4  
Synapsins, a family of synaptic vesicle proteins, play a crucial role in the regulation of neurotransmission and synaptogenesis. They have been identified in a variety of invertebrate and vertebrate species, including human, rat (Rattus norvegicus), cow (Bos taurus), longfin squid (Loligo pealei), and fruit fly (Drosophila melanogaster). Here, synapsins were cloned from three additional species: frog (Xenopus laevis), lamprey (Lampetra fluviatilis), and nematode (Caenorhabditis elegans). Synapsin protein sequences from all these species were then used to explore the molecular phylogeny of these important neuronal phosphoproteins. The ancestral condition of a single synapsin gene probably gave rise to the vertebrate synapsin gene family comprised of at least three synapsin genes (I, II, and III) in higher vertebrates. Synapsins possess multiple domains, which have evolved at different rates throughout evolution. In invertebrate synapsins, the most conserved domains are C and E. During the evolution of vertebrates, at least two gene duplication events are hypothesized to have given rise to the synapsin gene family. This was accompanied by the emergence of an additional conserved domain, termed A. J. Exp. Zool. ( Mol. Dev. Evol. ) 285:360-377, 1999.  相似文献   

17.
Ankyrins are membrane adaptor molecules that play important roles in coupling integral membrane proteins to the spectrin-based cytoskeleton network. Human mutations of ankyrin genes lead to severe genetic diseases such as fatal cardiac arrhythmias and hereditary spherocytosis. To elucidate the evolutionary history of ankyrins, we have identified novel ankyrin sequences in insect, fish, frog, chicken, dog, and chimpanzee genomes and explored the phylogenetic relationships of the ankyrin gene family. Our data demonstrate that duplication of ankyrin genes occurred at two different stages. The first duplication resulted from an independent evolution event specific in Arthropoda after its divergence from Chordata. Following the separation from Urochordata, expansion of ankyrins in vertebrates involved ancestral genome duplications. We did not find evidence of coordinated arrangements of gene families of ankyrin-associated membrane proteins on paralogous chromosomes. In addition, evolution of the 24 ANK-repeats strikingly correlated with the exon boundary sites of ankyrin genes, which might have occurred before its duplication in vertebrates. Such correlation is speculated to bring functional diversity and complexity. Moreover, based on the phylogenetic analysis of the ANK-repeat domain, we put forward a novel model for the putative primordial ankyrin that contains the fourth six-ANK-repeat subdomain and the spectrin-binding domain. These findings will provide guides for future studies concerning structure, function, evolutionary origins of ankyrins, and possibly other cytoskeletal proteins.  相似文献   

18.
19.
LIM homeobox family members regulate a variety of cell fate choices during animal development. In C. elegans, mutations in the LIM homeobox gene lin-11 have previously been shown to alter the cell division pattern of a subset of the 2 degrees lineage vulval cells. We demonstrate multiple functions of lin-11 during vulval development. We examined the fate of vulval cells in lin-11 mutant animals using five cellular markers and found that lin-11 is necessary for the patterning of both 1 degrees and 2 degrees lineage cells. In the absence of lin-11 function, vulval cells fail to acquire correct identity and inappropriately fuse with each other. The expression pattern of lin-11 reveals dynamic changes during development. Using a temporally controlled overexpression system, we show that lin-11 is initially required in vulval cells for establishing the correct invagination pattern. This process involves asymmetric expression of lin-11 in the 2 degrees lineage cells. Using a conditional RNAi approach, we show that lin-11 regulates vulval morphogenesis. Finally, we show that LDB-1, a NLI/Ldb1/CLIM2 family member, interacts physically with LIN-11, and is necessary for vulval morphogenesis. Together, these findings demonstrate that temporal regulation of lin-11 is crucial for the wild-type vulval patterning.  相似文献   

20.
The evolution of the thrombospondin gene family   总被引:8,自引:0,他引:8  
Summary Thrombospondin-1 is an adhesive glycoprotein that is involved in cellular attachment, spreading, migration, and proliferation. To date, four genes have been identified that encode for the members of the thrombospondin gene family. These four genes are homologous to each other in the EGF-like (type 2) repeats, the calcium-binding (type 3) motifs, and the COOH-terminal. The latter has been reported to be a cell-binding domain in thrombospondin-1. Phylogenetic trees have been constructed from the multisequence alignment of thrombospondin sequences from human, mouse, chicken, and frog. Two different algorithms generate comparable results in terms of the topology and the branch lengths. The analysis indicates that an early form of the thrombospondin gene duplicated about 925 million years ago. The gene duplication that produced the thrombospondin-1 and -2 branches of the family is predicted to have occurred 583 million years ago, whereas the gene duplication that produced the thrombospondin-3 and -4 branches of the family is predicted to have occurred 644 million years ago. These results indicate that the members of the thrombospondin gene family have existed throughout the evolution of the animal kingdom and thus probably participate in functions that are common to most of its members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号