首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to evaluate the effects of limiting nutrients and the N:P ratios on the growth of phytoplankton (mainly cyanobacteria) in a shallow hypertrophic reservoir between November 2002 and December 2003. Nutrient enrichment bioassays (NEBs) were conducted, along with analyses of seasonal ambient nutrients and phytoplankton taxa, in the reservoir. The average DIN:TDP and TN:TP mass ratios in the ambient water were 90 (range: 17–187) and 34 (13–60), respectively, during the study period. The dissolved inorganic phosphorus showed seasonal variation, but less than that of inorganic nitrogen. The TN:TP ratios ranged from 13 to 46 (mean: 27 ± 6) during June–December when the cyanobacteria, Microcystis, dominated the phytoplankton composition. The NEBs showed that phytoplankton growth was mainly stimulated by the phosphorus (all of total 17 cases), rather than the nitrogen concentration (8 of 17 cases). The rapid growth rate of cyanobacteria was evident with TN:TP ratios less than 30. According to the results of the NEBs with different N concentrations (0.07, 0.7 and 3.5 mg l−1), but the same N:P ratios and when the nitrogen concentration was highest, the cyanobacterial growth reached a maximum at N:P ratios <1. Overall, the response of cyanobacterial growth was a direct function of added phosphorus in the NEBs, and was greater with increased N concentrations. Thus, cyanobacterial blooms favored relatively low N:P ratios in this hypertrophic reservoir system. An erratum to this article is available at .  相似文献   

2.
The importance of nutrients as limiting factors might vary in environments with different limnological characteristics. In this article we evaluate the effect of frequency and duration of flooding on nutrient limitation in a riparian floodplain. Variations in N and P limitations were studied in the period of low (2003) and high (2004) water level in two different floodplain habitat types in the Nature Park Kopački Rit (Croatia), a floodplain area of the Danube River. In 2003 and 2004, the limnological characteristics of floodplain lake (Lake Sakadaš) and the channel (Stara Drava) differed due to their hydrological regimes. Potential for nutrient limitation was determined by DIN:TP and TN:TP ratios, while the actual nutrient limitation was assessed by nutrient enrichment bioassay. A change from non-limited to N-limited conditions in the channel, and consistent actual N limitation in the lake was determined by the nutrient enrichment experiment. Of the two ratios, DIN:TP matched better with the bioassay data. Phosphorus limitation was only occasionally evident. Changes in trophic conditions from hypereutrophy to eutrophy (between low and high water levels) reflected the importance of the hydrologic regime as a factor which can modify the trophic state of Lake Sakadaš. Compared with 2003, the increase of total nitrogen concentrations in 2004 calls attention to the importance of nitrogen inputs from the Danube to the system with excessive phosphorus concentrations.  相似文献   

3.
We aim to define the best nutrient limitation indicator predicting phytoplankton biomass increase as a result of nutrient enrichment (N, P, or both). We compare the abilities of different indicators, based on chemical measurements of nitrogen (N) and phosphorus (P) fractions in the initial plankton community, to predict the limiting factor for phytoplankton growth as inferred independently from short-term laboratory experiments on the same natural communities in a data set from NE Baltic Sea (Tamminen and Andersen, Mar Ecol Prog Ser 340:121–138, 2007). The best indicators had a true positive rate of about 80% for predicting both N and P limitation, but with a higher false positive rate for N than for P limitation (25 vs. 5%). Estimated threshold ratios for total nutrients (TN:TP) were substantially higher than the Redfield ratio, reflecting the relatively high amounts of biologically less available dissolved organic N in the study area. The best overall performing indicator, DIN:TP, had chlorophyll-response based threshold ratios far below Redfield, with N limitation below 2:1 and P limitation above 5:1 (by atoms). On the contrary, particulate N:P ratio was the overall worst predictor for N or P limitation, with values clustering around the Redfield N:P ratio (16:1, by atoms) independent of the limiting factor. Estimated threshold ratios based on inorganic nutrients (DIN:DIP) and so-called biologically available nutrients (BAN:BAP = (PON + DIN):(POP + DIP)) were also generally clearly above 16:1, indicating that the Redfield ratio rather reflects the transition from N limitation to combined N + P limitation, than to single limitation by P. Coastal systems are complex systems with regard to nutrient dynamics, historically considered to represent the transition from P-limited freshwater to N-limited marine systems. Our analysis shows that rather simple ratios reflect phytoplankton requirement for nutrients. Based on the high prediction performance, analytical considerations, and general data availability, the DIN:TP ratio appears to be the best indicator for inferring in situ N vs. P limitation of phytoplankton from chemical monitoring data.  相似文献   

4.
In this paper we consider the trophic state and ambient nutrient limitation by the trophic index (TRIX) calculation and nutrient enrichment bioassay using the diatom Phaeodactylum tricornutum at two differently eutrophicated NE coastal Adriatic locations (in the Rijeka Bay area). The first station in Rijeka Port had significantly higher concentrations of dissolved inorganic nutrients and TRIX indices (up to 7.53) than the station near Opatija. The DIN/TP ratios in Rijeka Port were lower (11.03 to 44.47) than those in Opatija (38.67 to 82.00), indicating P limitation in Opatija. The nutrient enrichment bioassays revealed P as the key limiting nutrient for the diatom growth at both sites. In addition, silica limitation was found in all water samples with the exception of the surface water samples in Rijeka Port. Nitrogen limitation was rarely evident.  相似文献   

5.
We determined the limiting nutrient of phytoplankton in 21 lakes and ponds in Wapusk National Park, Canada, using nutrient enrichment bioassays to assess the response of natural phytoplankton communities to nitrogen and phosphorus additions. The goal was to determine whether these Subarctic lakes and ponds were nutrient (N or P) limited, and to improve the ability to predict future impacts of increased nutrient loading associated with climate change. We found that 38% of lakes were not limited by nitrogen or phosphorus, 26% were co-limited by N and P, 26% were P-limited and 13% were N-limited. TN/TP, DIN/TP and NO3 /TP ratios from each lake were compared to the Redfield ratio to predict the limiting nutrient; however, these predictors only agreed with 29% of the bioassay results, suggesting that nutrient ratios do not provide a true measure of nutrient limitation within this region. The N-limited lakes had significantly different phytoplankton community composition with more chrysophytes and Anabaena sp. compared to all other lakes. N and P limitation of phytoplankton communities within Wapusk National Park lakes and ponds suggests that increased phytoplankton biomass may result in response to increased nutrient loading associated with environmental change.  相似文献   

6.
In tropical lakes relatively little is known about the general relationship between nutrient concentration and phytoplankton biomass. Using data from 192 lakes from tropical and subtropical regions we examine the relationship between total P (TP) and chlorophyll (Chl). The lakes are all located between 30° S to 31° N include systems in Asia, Africa, and North and South America but are dominated by Brazilian (n=79) and subtropical N. American (n=67) systems. The systems vary in morphometry (mean depth and lake area), trophic state as well total N (TN) to␣total P (TP) ratios and light extinction. Despite a nearly 500-fold range in TP concentrations (2–970 μg P l−1), there was a poorer relationship between log TP and log Chl (r 2=0.42) than is generally observed for temperate systems from either narrow or broad geographic regions. N limitation is not a likely explanation for the relatively weak TP–Chl relationship in the tropical–subtropical systems. Systems had high average TN:TP ratios and neither a multiple regression with log TP and log TN nor separating systems with high TN:TP (>17 by weight) improved the predictive power of the log TP–log Chl relationship.  相似文献   

7.
The transfer of energy and nutrients from plants to animals is a key process in all ecosystems. In lakes, inefficient transfer of primary producer derived energy can result in low animal growth rates, accumulation of nuisance phytoplankton blooms and dissipation of energy from the ecosystem. Most research on carbon transfer efficiency in pelagic food webs has focused on either food quantity or food quality, with the latter considered separately as either elemental stoichiometry or biochemical composition. The natural occurrence and magnitude of these types of growth limitations and their combined effects on Daphnia , a keystone grazer in pelagic freshwater ecosystems, are largely unknown. Our empirical models predict that the strength and nature of food quantity and quality limitation varies greatly with lake trophic state (total phosphorus, TP) and that Daphnia growth rates and thus energy and nutrient transfer efficiency are highest in lakes with intermediate trophic status (TP 10–25 μg l−1). We predict that food availability place the greatest constraint on Daphnia growth in nutrient poor lakes (TP≤4 μg l−1). Phosphorus limitation of Daphnia growth increased with decreasing TP, but the overall effect was never predicted to be the dominant constraining factor. Eicosapentaenoic acid (EPA, 20:5ω3) limitation was predicted to occur in both nutrient poor and nutrient rich lakes and placed the primary constraint on food quality in the most productive lakes. Two contrasting EPA-models gave different results on the magnitude of EPA-limitation, implying that additional food quality factors decrease Daphnia growth at high TP. In conclusion, the model predicts that Daphnia growth should peak in mesotrophic lakes, food quantity will place the greatest constraint on growth in oligotrophic lakes and EPA will primarily limit growth in eutrophic lakes.  相似文献   

8.
This article compares limnological attributes of two of the world’s largest shallow lakes—Lake Okeechobee in Florida, USA and Lake Taihu in P.R. China. Both the systems support an array of ecological and societal values including fish and wildlife habitat, public water supply, flood protection, and recreation. Both have extensive research programs, largely because of concern regarding the lakes’ frequent cyanobacterial blooms. By evaluating these systems together, we compare and contrast properties that can generally advance the understanding and management of large shallow lowland lakes. Because of shallow depth, long fetch, and unconsolidated mud sediments, water chemistry, and transparency in both the lakes are strongly influenced by resuspended sediments that affect light and nutrient conditions. In the central region of both the lakes, where depth is the greatest, evaluation of limiting factors by a trophic state index approach indicates that light most often limits phytoplankton biomass. In contrast, the more sheltered shoreline areas of both the lakes display evidence of nitrogen (N) limitation, which also has been confirmed in nutrient assays conducted in earlier studies. This N limitation most likely is a result of excessive levels of phosphorus (P) that have developed in the lakes due to high external loads over recent decades and the currently high internal P recycling. Comparisons of these lakes show that Lake Taihu has higher N than, similar total phosphorus (TP) and similar light conditions to that of Lake Okeechobee, but less chlorophyll a (CHL). The latter may be as a result of lower winter temperatures in Lake Taihu (around 5°C) compared to Lake Okeechobee (around 15°C), which could reduce phytoplankton growth and abundance through the other seasons of the year. In these systems, the important role of light, temperature, and nutrients in algal bloom dynamics must be considered, especially due to possible adverse and unintended effects that might occur with projects such as sediment removal, and in the long term, in regard to buffering lake responses to external load reduction. Handling editor: D. Hamilton  相似文献   

9.
The European Wadden Sea is characterized by high nutrient loads and turbid waters. Riverine nutrient input showed a gradual decrease since the mid 1980s. In the List Tidal Basin (Northern Wadden Sea) the frequency of low NO3 values in summer has increased and decreasing mean annual suspended matter concentrations indicate an increasing underwater irradiance. We used an approach developed by Cloern (Aquat Ecol 33:3–16, 1999) to analyze resource limitation of nitrogen (DIN) and underwater irradiance for phytoplankton growth in the List Tidal Basin between 1985 and 2005. Comparing our results to other studies suggests that the List Tidal Basin is one of the most nitrogen sensitive areas of the European Wadden Sea. In 2005, phytoplankton growth was light limited from January to May and in November and December, co-limited by both resources in June, July and October, and nitrogen limited in August and September. Comparing phytoplankton growth limitation in the periods 1985–1991 and 1999–2005, the duration of nitrogen limitation during summer is significantly longer in the second period (2.1 ± 0.9 months) than in the first (0.7 ± 0.5). Moreover, light limitation in September and October has decreased in the second period. A decreasing phytoplankton growth during summer is in line with former studies from the List Tidal Basin, which showed that summer chlorophyll concentrations have decreased since the mid 1980s. We suggest that nowadays less food is available for higher pelagic and benthic trophic levels due an increased nitrogen limitation during summer.  相似文献   

10.
Variability of nutrient limitation in the Archipelago Sea,SW Finland   总被引:1,自引:0,他引:1  
Kirkkala  T.  Helminen  H.  Erkkilä  A. 《Hydrobiologia》1997,356(1-3):117-126
Over a two year study period, zooplankton was sampledin Gazi Bay, Kenya, using a 335 μm mesh size Bongonet. Two Way Indicator Species Analysis (TWINSPAN)classification technique demonstrated that rainfalland tidal regime had substantial influence on thezooplankton community structure. Samples collectedduring the rainy season months clustered together whentreated with TWINSPAN. Furthermore, theclustering was more pronounced for neap tidesamples than for spring tide ones. Samples obtainedduring spring tide did not give a clear cut pattern. Canonical Correspondence Analysis (C.C.A.) confirmedthese findings, a clustering together of rainy/neaptide samples; and little separation (based onenvironmental variables) between samplingstations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Sommer U  Sommer F  Feuchtmayr H  Hansen T 《Protist》2004,155(3):295-304
We used marine phytoplankton from mesocosms seeded with different zooplankton densities to study the impact of mesozooplankton on phytoplankton nutrient limitation. After 7 d of grazing (copepod mesocosms) or 9 d (appendicularian mesocosms) phytoplankton nutrient limitation was studied by enrichment bioassays. After removal of mesozooplankton, bioassay bottles received either no nutrients, phosphorus or nitrogen alone, or a combination of nitrogen and phosphorus and were incubated for 2 d. Phytoplankton reproductive rates in the bottles without nutrient addition were calculated after correction for grazing by ciliates and indicated increasing nitrogen limitation with increasing copepod abundance. No nutrient limitation was found in the appendicularian mesocosms. The increase of nutrient limitation with increasing copepod density seems to be mainly the result of a trophic cascade effect: Copepods released nanoplankton from ciliate grazing pressure, and thereby enhanced nitrogen exhaustion by nanophytoplankton and reduced nitrogen excretion by ciliates. Nitrogen sequestration in copepod biomass, the mechanism predicted by the ecological stoichiometry theory, seems to have been a weaker effect because there was only little copepod growth during the experiment.  相似文献   

12.
Phytoplankton is widely recognized as being regulated mainly by resources (nutrients and light) and predation by higher trophic levels. In reservoirs, these controls also can be modulated by hydrology, for example through the influence of flow pulses generated by the operation of the dam. In this study, we tested the influence of light, nutrients, and zooplankton grazing pressure, and also hydrology (as water residence time) on the phytoplankton biomass in eight tropical hydroelectric reservoirs, which differ in size, morphometry, location, trophic state, and water residence time. Our hypothesis was that, as these reservoirs are used for hydroelectric purposes, the control that would otherwise be exerted on phytoplankton biomass primarily by resource availability and grazing will also be modulated by hydrology. Low phytoplankton biomass (range of system medians = 12–299 μg C l−1) occurred in most systems, except for one highly eutrophic reservoir (median = 1331 μg C l−1). Our data showed that phosphorus was more often likely to be the limiting nutrient in these systems, as assessed through nutrient limitation indexes (nitrogen and phosphorus), based on concentrations and ratios. For most reservoirs, excluding the eutrophic system with high cyanobacteria biomass, seasonal water residence time was the variable that best explained phytoplankton variation among the several environmental variables analyzed in this study (P < 0.0001; adjusted r 2 = 0.38). Hydrology was an important and additional factor modulating phytoplankton in these tropical reservoirs, directly removing phytoplankton populations and their potential zooplankton grazers by washout, and also affecting nutrient availability.  相似文献   

13.
Kisand  Veljo  Tuvikene  Lea  Nõges  Tiina 《Hydrobiologia》2001,457(1-3):187-197
Nutrient (P and N) enrichment experiments in small enclosures (20 l) were carried out to determine P and/or N limitation of bacterioplankton in Lake Võrtsjärv. The specific interest of the study was to test if it is possible to detect nutrient `physiological' or growth (rate) limitation of bacterioplankton and competition for nutrients (N and P) with phytoplankton in generally nutrient rich lake. Thymidine and leucine incorporation; leucine aminopeptidase, -D-glucosidase and alkaline phosphatase activity, total count of bacteria, chlorophyll a concentration and primary production as well as the concentrations of different chemical forms of N and P were followed during 4–5 days of the experiment. To address the question of the interactions between nutrients, bacterio- and phytoplankton, experimental and seasonal data sets were included in the analyses. Phosphorus (P) had a positive effect on bacterioplankton in enclosure experiments in June 1997; no effects of nutrients were found in September 1996, while in May 1996, P affected mainly the phytoplankton. On the seasonal scale, the development of bacterioplankton was connected to primary production, total phosphorus and temperature. In enrichment experiments, bacterioplankton was mainly related with primary productivity but the possible importance of bacterial grazers could be presumed. Thus, no evidence was found for nutrient growth limitation and/or competition for N and/or P, rather bacterioplankton depended on organic food supply originating from phytoplankton.  相似文献   

14.
珠江口及毗邻海域营养盐对浮游植物生长的影响   总被引:11,自引:0,他引:11  
张伟  孙健  聂红涛  姜国强  陶建华 《生态学报》2015,35(12):4034-4044
基于2006年7月(夏季),10月(秋季)和2007年3月(春季)的现场调查数据,对珠江口及毗邻海域中的营养盐和叶绿素a等环境生态因子的时空分布特性进行了对比分析,研究了氮磷比与叶绿素a含量和种群多样性之间的联系,探讨了该海域营养盐对于浮游植物生长的影响。结果表明:(1)研究海域营养盐表现出较强的季节和空间差异性,总氮(TN)和总磷(TP)浓度均值春季(1.545 mg/L、0.056 mg/L)和夏季(1.570 mg/L、0.058 mg/L)均大于秋季(1.442 mg/L、0.034 mg/L),且春夏季浓度空间差异更明显。(2)调查期间海域营养盐含量超标现象突出,夏季尤为明显。无机氮(DIN)总体均值0.99 mg/L,超四类海水标准限值1倍,活性磷酸盐(PO4-P)总体均值0.021 mg/L,DIN∶PO4-P平均值为130;叶绿素a浓度与营养盐、p H、温度有较显著的相关性。(3)叶绿素a浓度较高的站位,具有较高的DIN∶PO4-P值,但浮游植物多样性指数偏低,优势种明显,主要为中肋骨条藻。氮磷比的改变会影响不同生长特性的浮游植物间的竞争和种群结构的改变;今后海洋污染治理中,在控制氮、磷污染时要注意氮磷比的改变可能造成的浮游生态影响。  相似文献   

15.
16.
In the Laurentian Great Lakes, phytoplankton growth and biomass are secondarily limited by silica (Si), as a result of phosphorus (P) enrichment. Even modest levels of P enrichment can induce secondary Silimitation, which, in turn, promotes a shift from the native diatom phytoplankton flora to chlorophyte and cyanobacteria species. However, very little is known about the nutritional status of benthic populations and their response to nutrient enrichment. Two experiments were performed in the littoral zone of Lake Michigan where nutrients were delivered to in situ benthic algal (episammic and epilithic) assemblages using nutrient‐diffusing substrata. In order to test the hypothesis that benthic algae in Lake Michigan are Si limited, a 2 × 3 factorial experiment was used to deliver all combinations of Si, N, and P to resident assemblages growing on artificial substrata composed of natural (Si rich) versus calcium carbonate (Si poor) sand. A second experiment utilized a serial enrichment to evaluate the role of Si in mediating changes in taxonomic composition. These findings indicate that benthic algae in Lake Michigan exhibit signs of secondary Si limitation, and that their response to enrichment is similar to the phytoplankton. Moreover, natural sand substrata may provide a source of Si to resident benthic algae.  相似文献   

17.
We tested the hypothesis that excretion of nutrients by zooplanktoncan reduce the severity of nutrient limitation of phytoplankton,and determine whether the phytoplankton community is limitedby nitrogen or phosphorus. In situ experiments were conductedin eutrophic Lake Mendota (Wisconsin, USA) during the summerof 1988, where phytoplankton were limited by N and P, but periodsof nutrient limitation were transitory Increased zooplanktonbiomass and the consequent increased excretion of nutrientsby zooplankton reduced P limitation (as measured by specificalkaline phosphatase activity) in all experiments Excretionof nutrients also reduced N limitation (as measured by ammoniumenhancement response) in one of three experiments. In additionalexperiments in the more highly eutrophic Lake Wingra, excretionof nutrients by zooplankton reduced both N and P limitationThese results support the hypothesis that zooplankton have potentiallyimportant indirect effects on phytoplankton communities throughrecycling of nutrients  相似文献   

18.
Changing environments can have divergent effects on biodiversity–ecosystem function relationships at alternating trophic levels. Freshwater mussels fertilize stream foodwebs through nutrient excretion, and mussel species-specific excretion rates depend on environmental conditions. We asked how differences in mussel diversity in varying environments influence the dynamics between primary producers and consumers. We conducted field experiments manipulating mussel richness under summer (low flow, high temperature) and fall (moderate flow and temperature) conditions, measured nutrient limitation, algal biomass and grazing chironomid abundance, and analyzed the data with non-transgressive overyielding and tripartite biodiversity partitioning analyses. Algal biomass and chironomid abundance were best explained by trait-independent complementarity among mussel species, but the relationship between biodiversity effects across trophic levels (algae and grazers) depended on seasonal differences in mussel species’ trait expression (nutrient excretion and activity level). Both species identity and overall diversity effects were related to the magnitude of nutrient limitation. Our results demonstrate that biodiversity of a resource-provisioning (nutrients and habitat) group of species influences foodweb dynamics and that understanding species traits and environmental context are important for interpreting biodiversity experiments.  相似文献   

19.
The algal growth potential (AGP) in water samples of the Danube wetland waters (1388–1426 r. km) as well as the effect of nitrogen (in final concentration of 0.16 g l−1) and phosphorus enrichment (in final concentration of 0.02 g l−1) on the AGP was investigated by miniaturized bioassay method. Values of the total biomass of Chlorella kessleri up to the 14th day of incubation were suitable for the evaluation of trophic conditions according to the classification of AGP. On the basis of the AGP results, trophic conditions in 55% of the samples were oligo-mesotrophic and in 46% of the samples meso-eutrophic. A statistically significant correlation (r = 0.34) was established between the AGP of C. kessleri in original water samples and NO3 concentrations in situ. The TN/TP ratio in the wetland waters indicated a greater limitation due to nitrogen than phosphorous. Significantly lower TSITN than TSISD, TSIChla and TSITP indicated nitrogen limited conditions. In order to quantify established nutrient limitation by the bioassay method, the effect of added N and P concentrations on the growth rate of C. kessleri was expressed as the degree of nutrient limitation (Δr d−1) during 7 days of incubation. In the Danube wetland waters only N limitation was established in June and July; N and P limitation in May and September while in August and October 2003 neither of the tested nutrients were limiting. From May to October 2003 the significantly highest degree of nitrogen (Δr = 0.736 d−1) and phosphorus limitation (Δr = 0.474 d−1) was determined in Lake Sakadaš.  相似文献   

20.
A dramatic increase in the breeding population of geese has occurred over the past few decades at Svalbard. This may strongly impact the fragile ecosystems of the Arctic tundra because many of the ultra-oligotrophic freshwater systems experience enrichment from goose feces. We surveyed 21 shallow tundra ponds along a gradient of nutrient enrichment based on exposure to geese. Concentrations of total phosphorus (P) and dissolved inorganic nitrogen (DIN) in the tundra ponds ranged from 2–76 to 2–23 μg l−1 respectively, yet there was no significant increase in phytoplankton biomass (measured as chlorophyll a; range: 0.6–7.3 μg l−1) along the nutrient gradient. This lack of response may be the result of the trophic structure of these ecosystems, which consists of only a two-trophic level food chain with high biomasses of the efficient zooplankton grazer Daphnia in the absence of fish and scarcity of invertebrate predators. Our results indicate that this may cause a highly efficient grazing control of phytoplankton in all ponds, supported by the fact that large fractions of the nutrient pools were bound in zooplankton biomass. The median percentage of Daphnia–N and Daphnia–P content to particulate (sestonic) N and P was 338 and 3009%, respectively, which is extremely high compared to temperate lakes. Our data suggest that Daphnia in shallow arctic ponds is heavily subsidized by major inputs of energy from other food sources (bacteria, benthic biofilm), which may be crucial to the persistence of strong top–down control of pelagic algae by Daphnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号