首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.  相似文献   

2.
Human embryonic stem cell (hESC) lines are traditionally derived and maintained on mouse embryonic fibroblasts (MEF) which are xenogeneic and enter senescence rapidly. In view of the clinical implications of hESCs, the use of human fibroblast as feeders has been suggested as a plausible alternative. However, use of fibroblast cells from varying sources leads to culture variations along with the need to add FGF2 in cultures to sustain ES cell pluripotency. In this study we report the derivation of FGF2 expressing germ layer derived fibroblast cells (GLDF) from hESC lines. These feeders could support the pluripotency, karyotypes and proliferation of hESCs with or without FGF2 in prolonged cultures as efficiently as that on MEF. GLDF cells were derived from embryoid bodies and characterized for expression of fibroblast markers by RT-PCR, Immunofluorescence and by flow cytometry for CD marker expression. The expression and secretion of FGF2 was confirmed by RT-PCR, Western blot, and ELISA. The hESC lines cultured on MEF and GLDF were analyzed for various stemness markers. These feeder cells with fibroblast cells like properties maintained the properties of hESCs in prolonged culture over 30 passages. Proliferation and pluripotency of hESCs on GLDF was comparable to that on mouse feeders. Further we discovered that these GLDF cells could secrete FGF2 and maintained pluripotency of hESC cultures even in the absence of supplemental FGF2. To our knowledge, this is the first study reporting a novel hESC culture system which does not warrant FGF2 supplementation, thereby reducing the cost of hESC cultures.  相似文献   

3.
Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of blastocyst staged embryos. Spare blastocyst staged embryos were obtained by in vitro fertilization (IVF) and donated for research purposes. hESCs carrying specific mutations can be used as a powerful cell system in modeling human genetic disorders. We obtained preimplantation genetic diagnosed (PGD) blastocyst staged embryos with genetic mutations that cause human disorders and derived hESCs from these embryos. We applied laser assisted micromanipulation to isolate the inner cell mass from the blastocysts and plated the ICM onto the mouse embryonic fibroblast cells. Two hESC lines with lesions in FOXP3 and NF1 were established. Both lines maintain a typical undifferentiated hESCs phenotype and present a normal karyotype. The two lines express a panel of pluripotency markers and have the potential to differentiate to the three germ layers in vitro and in vivo. The hESC lines with lesions in FOXP3 and NF1 are available for the scientific community and may serve as an important resource for research into these disease states.  相似文献   

4.
5.
Clinically compliant human embryonic stem cells (hESCs) should be developed in adherence to ethical standards, without risk of contamination by adventitious agents. Here we developed for the first time animal-component free and good manufacturing practice (GMP)-compliant hESCs. After vendor and raw material qualification, we derived xeno-free, GMP-grade feeders from umbilical cord tissue, and utilized them within a novel, xeno-free hESC culture system. We derived and characterized three hESC lines in adherence to regulations for embryo procurement, and good tissue, manufacturing and laboratory practices. To minimize freezing and thawing, we continuously expanded the lines from initial outgrowths and samples were cryopreserved as early stocks and banks. Batch release criteria included DNA-fingerprinting and HLA-typing for identity, characterization of pluripotency-associated marker expression, proliferation, karyotyping and differentiation in-vitro and in-vivo. These hESCs may be valuable for regenerative therapy. The ethical, scientific and regulatory methodology presented here may serve for development of additional clinical-grade hESCs.  相似文献   

6.
Realizing the potential of human embryonic stem cells (hESCs) in research and commercial applications requires generic protocols for culture, expansion and genetic modification that function between multiple lines. Here we describe a feeder-free hESC culture protocol that was tested in 13 independent hESC lines derived in five different laboratories. The procedure is based on Matrigel adaptation in mouse embryonic fibroblast conditioned medium (CM) followed by monolayer culture of hESC. When combined, these techniques provide a robust hESC culture platform, suitable for high-efficiency genetic modification via plasmid transfection (using lipofection or electroporation), siRNA knockdown and viral transduction. In contrast to other available protocols, it does not require optimization for individual lines. hESC transiently expressing ectopic genes are obtained within 9 d and stable transgenic lines within 3 weeks.  相似文献   

7.
Human embryonic stem cells (hESC) are undifferentiated cells derived from an early embryo that can grow in vitro indefinitely, while retaining their capability to differentiate into specialized somatic cell types. Over the last decade there has been great interest in derivation and culture of these cells, as they can potentially provide a supply of readily available differentiated cells and tissues of all types to be used for therapeutic purposes in cell transplantation in humans, as well as for other medical uses such as drug discovery. The source of hESC lines is usually excess human embryos from in vitro fertilization treatments, although novel ways of producing hESCs have been suggested recently. The actual methods of hESC derivation have not changed greatly since the first report by Thomson et al. in 1998 . However, the main emphasis over the last several years has been in finding defined conditions for derivation and culture of hESCs, because to enable the clinical use of hESC for cell transplantation, the use of animal derived biological components is no longer acceptable. For basic research, the aim is to replace even human derived materials with completely defined systems. In this paper we describe methods utilized in our laboratory for hESC derivation and describe two studies conducted in an attempt to improve derivation efficiency and to enable research outcomes to be achieved using fewer embryos.  相似文献   

8.
9.
10.
Hepatocytes derived from human embryonic stem cells (hESCs) are a potential cell source for regenerative medicine. However, the definitive factors that are responsible for hepatic differentiation of hESCs remain unclear. We aimed to evaluate the effects of various extracellular matrixes and growth factors on endodermal differentiation and to optimize the culture conditions to induce hepatic differentiation of hESCs. The transgene vector that contained enhanced green fluorescent protein (EGFP) under the control of human alpha-fetoprotein (AFP) enhancer/promoter was transfected into hESC lines. The transgenic hESCs were cultured on extracellular matrixes (collagen type I, laminin, and Matrigel) in the presence or absence of growth factors including hepatocyte growth factor (HGF), bone morphogenetic protein 4, fibroblast growth factor 4, all-trans-retinoic acid, and activin A. The expression of AFP-EGFP was measured by flow cytometry. The culture on Matrigel-coated dishes with 100 ng/ml activin A showed 19.5% of EGFP-positive proportions. Moreover, the sequential addition of 100 ng/ml activin A and 20 ng/ml HGF resulted in 21.7% and produced a higher yield of EGFP-positive cells than the group stimulated by activin A alone. RT-PCR and immunocytochemical staining revealed these EGFP-positive cells to differentiate into mesendoderm-like cells by use of activin A and then into hepatic endoderm cells by use of HGF. Two other hESC lines also differentiated into endoderm on the hepatic lineage by our method. In conclusion, we therefore found this protocol to effectively differentiate multiple hESC lines to early hepatocytes using activin A and HGF on Matrigel.  相似文献   

11.
Pluripotent stem cells are derived from the inner cell mass of preimplantation embryos, and display the ability of the embryonic founder cells by forming all three germ lineages in vitro. It is well established that the cellular niche plays an important role in stem cell maintenance and differentiation. Stem cells generally have limited function without the specialized microenvironment of the niche that provides key cell-cell contact, soluble mediators, and extracellular matrices. We were interested in the role that Wnt signaling, in particular Wnt3a, played in human embryonic stem cell (hESC) differentiation to hepatic endoderm in vitro. hESC differentiation to hepatic endoderm was efficient in pure stem cell populations. However, in younger hESC lines, generating stromal cell mesenchyme, our model was very inefficient. The negative effect of stroma could be reversed by pretreating hESCs with Wnt3a prior to the onset of hepatocyte differentiation. Wnt3a pretreatment reinstated efficient hESC differentiation to hepatic endoderm. These studies represent an important step in understanding hepatocyte differentiation from hESCs and the role played by the cellular niche in vitro.  相似文献   

12.
Melichar H  Li O  Ross J  Haber H  Cado D  Nolla H  Robey EA  Winoto A 《PloS one》2011,6(5):e19854
Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34(+) or CD34(+)CD45(+) hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34(+) precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34(+) hematopoietic precursors generated in vitro versus in vivo.  相似文献   

13.
Gerwe BA  Angel PM  West FD  Hasneen K  Young A  Orlando R  Stice SL 《Proteomics》2011,11(12):2515-2527
Cultured human embryonic stem cells (hESCs) and derived derivatives contain heterogeneous cell populations with varying degrees of differentiation and karyotypic stability. The inability to isolate homogenous population presents a challenge toward cell-based applications and therapies. A proteomics approach was utilized to discover novel membrane proteins able to distinguish between the hESC lines BG01, WA09, and abBG02 (trisomy 12, 14, 17 and an extra copy of the X chromosome), along with WA09-derived human neural progenitor (hNP) cells. Membrane protein signatures were developed using sucrose-gradient isolation, 1-D gel electrophoresis followed by in-gel digestion and analysis by reverse phase chromatography coupled to ion trap-FT-ICR. At a ≤1.0% false discovery rate, 1918 proteins were identified; 775 were annotated as membrane proteins and 720 predicted to contain transmembrane spanning regions. Flow cytometry was used to validate cell surface expression of selected proteins. Junctional adhesion molecule 1 expression was shared by BG01, BG02 and abBG02 hESC lines. Dysferlin expression was specific to the WA09 hESC line and not the derived neural or mesenchymal progenitors. Ciliary neurotrophic factor receptor distinguished WA09-derived human neural progenitor cells from the parent hESC population, and WA09-derived mesenchymal progenitor cells. This study expands the current membrane protein data set for hESCs.  相似文献   

14.
15.
16.
The conventional method for the derivation of human embryonic stem cells (hESCs) involves inner cell mass (ICM) co-culture with a feeder layer of inactivated mouse or human embryonic fibroblasts in an in vitro fertilisation culture dish. Growth factors potentially involved in primary derivation of hESCs may be lost or diluted in such a system. We established a microdrop method which maintained feeder cells and efficiently generated hESCs. Embryos were donated for stem cell research after fully informed patient consent. A feeder cell layer was made by incubating inactivated mouse embryonic fibroblasts (MEFs) feeder cells in a 50 μl drop of medium (DMEM/10% foetal calf serum) under mineral oil in a small tissue culture dish. MEFs formed a confluent layer and medium was replaced with human embryonic stem medium supplemented with 10% Plasmanate (Bayer) and incubated overnight. Cryopreserved embryos were thawed and cultured until the blastocyst stage and the zona pellucida removed with pronase (2 mg/ml; Calbiochem). A zona-free intact blastocyst was placed in the feeder microdrop and monitored for ES derivation with medium changed every 2-3 d. Proliferating hESCs were passaged into other feeder drops and standard feeder preparation by manual dissection until a stable cell line was established. Six hESC lines (Shef 3-8) were derived. From a total of 46 blastocysts (early to expanded), five hESC lines were generated (Shef 3-7). Shef 3-6 were generated on MEFs from 25 blastocysts. Shef7 was generated on human foetal gonadal embryonic fibroblasts from a further 21 blastocysts. From our experience, microdrop technique is more efficient than conventional method for derivation of hESCs and it is much easier to monitor early hESC derivation. The microdrop method lends itself to good manufacturing practice derivation of hESCs.  相似文献   

17.
18.
Various types of feeder cells have been adopted for the culture of human embryonic stem cells (hESCs) to improve their attachment and provide them with stemness-supporting factors. However, feeder cells differ in their capacity to support the growth of undifferentiated hESCs. Here, we compared the expression and secretion of four well-established regulators of hESC pluripotency and/or differentiation among five lines of human foreskin fibroblasts and primary mouse embryonic fibroblasts throughout a standard hESC culture procedure. We found that human and mouse feeder cells secreted comparable levels of TGF beta 1. However, mouse feeder cells secreted larger quantities of activin A than human feeder cells. Conversely, FGF-2, which was produced by human feeder cells, could not be detected in culture media from mouse feeder cells. The quantity of BMP-4 was at about the level of detectability in media from all feeder cell types, although BMP-4 dimers were present in all feeder cells. Production of TGF beta 1, activin A, and FGF-2 varied considerably among the human-derived feeder cell lines. Low- and high-producing human feeder cells as well as mouse feeder cells were evaluated for their ability to support the undifferentiated growth of hESCs. We found that a significantly lower proportion of hESCs maintained on human feeder cell types expressed SSEA3, an undifferentiated cell marker. Moreover, SSEA3 expression and thus the pluripotent hESC compartment could be partially rescued by addition of activin A. Cumulatively, these results suggest that the ability of a feeder layer to promote the undifferentiated growth of hESCs is attributable to its characteristic growth factor production.  相似文献   

19.
Lin G  OuYang Q  Zhou X  Gu Y  Yuan D  Li W  Liu G  Liu T  Lu G 《Cell research》2007,17(12):999-1007
Homozygous human embryonic stem cells (hESCs) are thought to be better cell sources for hESC banking because their human leukocyte antigen (HLA) haplotype would strongly increase the degree of matching for certain populations with relatively smaller cohorts of cell lines. Homozygous hESCs can be generated from parthenogenetic embryos, but only heterozygous hESCs have been established using the current strategy to artificially activate the oocyte without second polar body extrusion. Here we report the first successful derivation of a human homozygous ESC line (chHES- 32) from a one-pronuclear oocyte following routine in vitro fertilization treatment, chHES-32 cells express common markers and genes with normal hESCs. They have been propagated in an undifferentiated state for more than a year (〉P50) and have maintained a stable karyotype of 46, XX. When differentiated in vivo and in vitro, chHES-32 cells can form derivatives from all three embryonic germ layers. The almost undetectable expression of five paternally expressed imprinted genes and their HLA genotype identical to the oocyte donor indicated their parthenogenetic origin. Using genome-wide single-nucleotide polymorphism analysis and DNA fingerprinting, the homozygosity of chHES-32 cells was further confirmed. The results indicated that ‘ unwanted' one-pronuclear oocytes might be a potential source for human homozygous and parthenogenetic ESCs, and suggested an alternative strategyfor obtaining homozygous hESC lines from parthenogenetic haploid oocytes.  相似文献   

20.
Human embryonic stem cells (hESCs) are pluripotent, whereby they can proliferate endlessly and differentiate into many different cell types. At the molecular level, little is known of the mechanisms underlying their capability for self-renewal and differentiation. In the present study, we established two new hESC lines (AMC-hES1 and AMC-hES2) and demonstrated the existence of a regulator that may be a key molecule in hESC dynamics. Spa-1 is a principal Ras-proximate 1 (Rap1) GTPase-activating protein in hematopoietic progenitor cells that regulates Rap1-related signal transduction and is expressed restrictively in human adult tissues (bone marrow, thymus, and spleen). To investigate its functions in hESCs, we examined spa-1 expression profiles during hESC differentiation and used RNA interference (RNAi) to downregulate spa-1 in these cells. Our results show that Spa-1 is expressed in undifferentiated hESCs and is downregulated during hESC differentiation. In addition, the process of passing from the mode of self-renewal to that of differentiation in hESCs was regulated by spa-1 via Rap1/Raf/mitogen-activated protein kinase kinase/extracellular signal-related kinase signaling. An RNAi expression vector against spa-1 (pSUPER.retro.puro) was transfected into hESCs, which were seen to differentiate into three germ layers in spite of being in the undifferentiated condition. Based on our findings, therefore, it appears that spa-1 may be involved in hESC dynamics, and our results provide fundamental information regarding the self-renewal and differentiation of hESCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号