首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了从中药丹皮(Moutan Cortex)中得到的酸性多糖PSM2b-A的化学结构.实验结果表明PSM2b-A由鼠李糖、阿拉伯糖、葡萄糖、半乳糖、甘露糖和少量蛋白质、糖醛酸组成.甲基化分析、部分酸水解、高碘酸氧化和smith降解等化学方法和IR,13C NMR试验进一步表明PSM2b-A为以(1→6)、(1→4)连接为主链的、带有少量分支的结构复杂的杂多糖,在分子间氢键的作用下能形成高级结构.该多糖化学结构为首次报道.  相似文献   

2.
An extracellular galactoxylomannan (GalXM) composed of D-Gal (34.0%), D-Xyl (26.6%) and D-Man (31.0%), and a small amount of L-Ara (4.0%) and D-Glc (4.4%) has been isolated from culture medium of acapsulated mutant of Cryptococcus laurentii by ethanol precipitation and gel filtration. Phosphorylated polymer of Mw approximately 75,000 contained 90% carbohydrates, 3.9% phosphorus and 5.3% proteins. Results of chemical and spectroscopic studies showed a highly branched structure of GalXM with a 1,6-linked mannopyranosyl-galactopyranosyl backbone (approximately 44%) branched predominantly at C-2 and C-3 of mannosyl, and C-3 of galactosyl residues by side chains terminated mainly by xylosyl and mannosyl residues, and to a less extent by arabinosyl and glucosyl ones.  相似文献   

3.
Escherichia coli TG1 transformed with a temperature-regulated interferon-α expression vector was grown to high cell density in defined medium containing glucose as the sole carbon and energy source, utilizing a simple fed-batch process. Feeding was carried out to achieve an exponential increase in biomass at growth rates which minimized acetate production. Thermal induction of such high cell density cultures resulted in the production of ∼4 g interferon-α/l culture broth. Interferon-α was produced exclusively in the form of insoluble inclusion bodies and was solubilized under denaturing conditions, refolded in the presence of arginine and purified to near homogeneity, utilizing single-step ion-exchange chromatography on Q-Sepharose. The yield of purified interferon-α was ∼300 mg/l with respect to the original high cell density culture broth (overall yield of ∼7.5% active interferon-α). The purified recombinant interferon-α was found by different criteria to be predominantly monomeric and possessed a specific bioactivity of ∼2.5 × 108 IU/mg based on viral cytopathic assay. Received: 8 October 1999 / Received revision: 8 December 1999 / Accepted: 12 December 1999  相似文献   

4.
A sulfated polysaccharide with anticoagulant properties was isolated from the fermented brown seaweed Sargassum fulvellum. Freeze-dried S. fulvellum was fermented in an incubator for 10th week at 25°C to convert seaweed macromolecules into anticoagulant sulfated polysaccharides (ASP). Anticoagulant activity was determined by an activated partial thromboplastin time (APTT) test using citrated human blood plasma. The 8th week S. fulvellum crude seaweed extract (SWE) exhibited the highest blood anticoagulant activity. Therefore, 8th week crude SWE was used for purification of ASP by two steps; DEAE cellulose anion-exchange followed by Sepharose 4B chromatography. The isolated ASP showed a single spot on agarose gel electrophoresis, which confirmed the purification status of our ASP. Polyacrylamide gel electrophoresis (PAGE) analysis showed that the molecular mass of the purified ASP was between 8 and 20 kDa. Polysaccharide and sulfate concentrations of the purified ASP were 180 and 29.70 μg mL−1 respectively. ASP recovery was 1.32% (w/w) from the crude polysaccharide applied to the DEAE column. Purified ASP had a pH of 3.86 and was considered an acidic polysaccharide. Moreover, both ASP and heparin showed a relative clotting factor of 27.47 at the concentrations of 180 and 60 μg mL−1 respectively. Therefore, S. fulvellum ASP can be considered a weaker anticoagulant than heparin. Results of the APTT, PT, and TT clotting assays showed that ASP was able to inhibit both intrinsic and extrinsic blood coagulation pathways. Finally, this study established a feasible and simple experimental protocol to isolate anticoagulant from fermented seaweeds leading to potential further development of anticoagulant agent for the pharmaceutical industry.  相似文献   

5.
This study deals with the chemical characterization of an extracellular polysaccharide produced by the unicellular red alga Porphyridium sp. The sugar moiety of this polymer is composed of three neutral monosaccharides (Xyl, Glc, and Gal) and one uronic acid (GlcA). Proteins represent 5.5% of the dry weight of the polymer. Uronic degradation of this exopolysaccharide with lithium in ethylenediamine yielded two different oligosaccharides. The absolute configuration of the constitutive monosaccharides was chemically determined and revealed the presence of D-Xyl, D-Glc, D-, and L-Gal. The following oligosaccharide structures were established by NMR spectroscopy: [carbohydrate structure: see text].  相似文献   

6.
为明确紫球藻多糖的化学结构,本文采用化学分析和光谱分析方法对紫球藻多糖的一级糖链结构进行了分析。GC分析表明该多糖由木糖、葡萄糖和半乳糖组成,为一种杂多糖,其摩尔比为:2.96∶1.25∶3.06;红外光谱分析结果显示紫球藻多糖为硫酸化多糖,糖苷键类型为β构型;化学分析结果推断紫球藻多糖糖链连接方式以1→3为主,存在少量1→2,1→4,1→6键型,且半乳糖在支链或主链末端有较大量的存在,木糖和葡萄糖在主链或靠近主链区域有特定分布;NMR分析显示紫球藻多糖的硫酸酯基连在C-6上,且多糖的糖苷键为β型;GC-MS联机分析进一步确定紫球藻多糖为一种主要含有1→3糖苷键,并含有1→4,1→6糖苷键的杂多糖。综合上述分析,推断出紫球藻多糖的糖链主链的重复单元结构。  相似文献   

7.
Atomic force microscopy with two types of probes—standard (radius of curvature R ∼ 10 nm) and supersharp (R ∼ 2 nm)—was used to determine an oligomeric state of CYP102A1. Using the standard probes CYP102A1 images were obtained in liquid, air and vacuum environments, and a CYP102A1 monomer: oligomer ratio α ≈ 1 was also determined. However, the use of standard probes did not allow to resolve structures of these oligomers. Using the supersharp probes it was possible to determine not only the monomer: oligomer ratio, but also to evaluate the dimer: trimer: tetramer ratio in vacuum. Thus, the ratio α for CYP102A1 in liquid can be determined by the standard probes in liquid, air, and vacuum, while oligomeric states of this protein can be specified by using the supersharp probes in vacuum.  相似文献   

8.
A mutant strain (R1510) of Leuconostoc mesenteroides B-1355 was isolated which synthesized primarily an insoluble polysaccharide and little soluble polysaccharide when grown in sucrose-containing medium. Glucose or sucrose cultures of this strain produced a single intense band of GTF-1 activity of 240 kDa on SDS gels, and a number of faint, smaller bands. Oligosaccharides synthesized by strain R1510 from methyl-α-D-glucoside and sucrose included a trisaccharide whose structure contained an α(1→2) glucosidic linkage. This type of linkage has not been seen before in any products from strain B-1355 or its mutant derivatives. The structure of the purified trisaccharide was confirmed by 13C-nuclear magnetic resonance. The insoluble polysaccharide also contained α(1→2) branch linkages, as determined by methylation analysis, showing that synthesis of the linkages was not peculiar to methyl-α-D-glucoside. GTF-1, which had been excised with a razor blade from an SDS gel of a culture of the parent strain B-1355, produced the same trisaccharides as strain R1510, showing that GTF-1 from the wild-type strain was the same as GTF-1 from strain R1510. Mutant strains resembling strain R1510, but producing a single intense band of alternansucrase (200 kDa) instead of GTF-1 were also isolated, suggesting that mutations may be generated which diminished the activities for any two of the three GTFs of strain B1355 relative to the third. Strain R1554 produced a soluble form of alternansucrase, while strain R1588 produced a cell-associated form. The mechanism(s) by which specific GTFs become associated with the cells of L. mesenteroides was not explored. Received 12 May 1998/ Accepted in revised form 16 July 1998  相似文献   

9.
α-Mannosidase (EC 3.2.1.24) was purified from ‘Iseimo’, a native variety of Dioscorea opposita Thunb. Before purification, we investigated the composition of a viscous polysaccharide that interferes with column chromatography procedures. The polysaccharide consisted mainly of mannose, and also contained uronic acid. We used the cationic detergent cetylpyridinium chloride (CPC) to remove the polysaccharide. CPC treatment decreased viscosity without affecting α-mannosidase activity. We purified α-mannosidase 2,650-fold. The optimal pH of the enzyme was 6.0 and the optimum temperature was 65°C. The K m value for p-nitrophenyl-α-d-mannopyranoside was 0.35 ± 0.03 mM. Activity was inhibited by swainsonine but not kifunensine. The enzyme cleaved α-1,2 linkages preferentially to α-1,6 and α-1,3 linkages. The M r of purified α-mannosidase was estimated to be 250–260 kDa by gel filtration and native-PAGE. Four polypeptides (86, 83, 80, and 28 kDa) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is unclear whether the polypeptides are encoded by one gene or multiple genes. However, N-terminal sequence analysis suggested that post-translational cleavage and/or glycosylation resulted in the three large fragments, if these amino acids were encoded by the same gene. Homology searches and characterization of the enzyme’s properties indicated that Iseimo α-mannosidase belongs to the glycoside hydrolase family 38 proteins, and to the Class II mannosidase group.  相似文献   

10.
A water-soluble polysaccharide was isolated and purified from the culture filtrate of the photosynthetic green microalgae Haematococcus lacustris by 75% ethanol precipitation and Sepharose CL-6B column chromatography. The molecular mass of the purified polysaccharide (named HCP) was estimated to be approximately 135 kDa by size-exclusion HPLC and its monosaccharide composition was galactose, glucose and mannose at a relative molar ratio of 2.0, 1.0, and 4.1, respectively, suggesting that HCP is a galactomannan. Fourier-transform infrared and elemental analysis revealed that the purified HCP contains sulfate esters by 1.08% (in mass) and no detectable level of protein. The HCP significantly stimulated murine macrophage RAW264.7 cells to secrete the pro-inflammatory cytokine, TNF-α, in a dose-dependent manner and also enhanced the expression of COX-2 and iNOS genes at a concentration of lower than 10 μg/mL HCP. These results indicated that the sulfated HCP of H. lacustris has potent early innate immune stimulating activities.  相似文献   

11.
Summary An extracellular polysaccharide producing bacterium Zoogloea sp. was isolated from marine environments. This strain could produce two different polysaccharides. One (water-soluble polysaccharide : WSP) was from cell-free liquid medium, the other (cell-bound polysaccharide : CBP) was obtained from cell surface. Both polysaccharides contained glucose, galactose and mannose as sugar components, but their molar ratios were different (WSP : 2:2:3, CBP : 1:2:2) and half of the sugar components existed as uronic acid form. Both polysaccharide productions started at the early stage of the logarithmic growth phase. The amount of WSP and CBP was influenced by culture conditions such as additional carbon and nitrogen sources. Isolated Zoogloea sp. showed a high product yield without the increase of cell mass.  相似文献   

12.
A thermophilic fungus Thermomyces lanuginous strain IISc 91, secreted one form each of α-amylase and glucoamylase during growth. Both enzymes were purified to homogeneity by ion-exchange and gel-filtration chromatography and obtained in mg quantities. α-Amylase was considered to be a dimeric protein of ∼ 42 kDa and contained 5% (by mass) carbohydrate. It was maximally active at pH 5.6 and at 65°C. It had an activation energy of 44 kJ mol-1. The apparent Km for soluble starch was 2.5 mg ml-1. The enzyme produced exceptionally high levels of maltose from raw potato starch. At 50°C, the enzyme was stable for > 7h. At 65°C, α-amylase was nearly 8-times more stable in the presence of calcium. Addition of calcium increaed the melting temperature of α-amylase from 66°C to 73°C. Upon incubation at 94°C, α-amylase was progressively and irreversibly inactivated, and converted into an inactive 72 kDa trimeric species. Glucoamylase was a monomeric glycoprotein of ∼ 45 kDa with a carbohydrate content of 11% (by mass). It effected up to 76% conversion of starch in 24 h producing glucose as the sole product. Its apparent Km for soluble starch was 0.04 mg ml-1 and Vmax was 660 Mmol glucose min-1 mg protein-1. It also hydrolyzed maltose. Its activity on maltooligosaccharides increased with the chain length of the substrates. Glucoamylase was stable at 60°C for over 7h. Its activation energy was 61 kJ mol-1 Glucoamylase did not show synergistic effect with α-amylase. The properties of α-amylase and glucoamylase of Thermomyces lanuginosus strain IISc 91 suggest their usefulness in the commercial production of maltose and glucose syrups.  相似文献   

13.
Trehalase from the culture filtrate ofLentinula edodes was purified and characterized. Molecular masses were estimated to be 158 kDa and 79–91 kDa by gel filtration and SDS-PAGE under the reduced condition, respectively. The enzyme was composed of two identical subunits and contained carbohydrate molecules. The optimum temperature and pH were obtained at around 40°C and pH 5.0, respectively. The enzyme was stable up to 40°C and in a range pH of 4–10 at 30°C. It cleaved α-1,1 linkages of trehalose, but not α-1,4, α-1,6 or β-1,4 glycosyl linkages, and was defined as an acid trehalase.  相似文献   

14.
Crude water-soluble polysaccharides (ASP) were separated from Angelica sinensis (Oliv.) Diels by hot water extraction. They were fractionated into neutral and acidic polysaccharides by anion-exchange chromatography. The neutral polysaccharide (ASP1) was rich in glucose, galactose, and arabinose suggesting a mixture of glucan and arabinogalactan. The acidic polysaccharide (ASP2, ASP3) consisted mainly of galacturonic acid along with rhamnose, arabinose, and galactose indicating a pectic polysaccharide. The degree of esterification of ASP and ASP3 were 54.06% and 47.14% for the crude and purified sample, respectively. ASP3, with a molecular weight of 3.4 × 104 Da determined by high-performance size-exclusion chromatography (HPSEC), was the major constituent for the crude extracts. The radioprotective effect of the pectic polysaccharide ASP3 was studied in murine models. ASP3 pretreated mice exhibited a significant decrease of apoptosis (P < 0.05, dosage of 200 mg/kg d body weight) in peripheral lymphocytes compared to the irradiated control. The results showed that ASP3 can protect leucocytes and lymphocytes of mice against radiation induced damage, which has potential radioprotective effect on acute radiation injured mice.  相似文献   

15.
16.
Preparations of Na,K-ATPase from outer medulla of rabbit kidney purified in accordance with the method of P. L. Jorgensen were shown to contain as admixture a protease that moves with α-subunit (∼100 kDa) as a single protein band during one-dimensional SDS-PAGE. The electro-elution of proteins of this band from polyacrylamide gel results in the appearance of two protein fragments (∼67 and 55 kDa) that are stained with polyclonal antibodies against Na,K-ATPase α-subunit. Liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis showed that the neutral membrane-bound endopeptidase neprilysin is located in one protein band together with the Na,K-ATPase α-subunit. Addition of thiorphan, a specific inhibitor of neutral endopeptidase, eliminates proteolysis of the α-subunit. The data demonstrate that Na,K-ATPase α-subunit may be a natural target for neprilysin.  相似文献   

17.
Galactomannan with a molecular weight of 1976 kDa was isolated by hot water extraction from the locoweed (Oxytropis lanata (Pallas) DC) seeds (yield, 3.68% of the seed weight); its solutions display high viscosity: [η] = 1697.7 ml/g and optical activity αD + 76.8°. The polysaccharide consists of mannose and galactose residues at a molar ratio of 1.36: 1. The backbone of galactomannan macromolecule is formed by 1,4-β-D-mannopyranose residues, 73.5% of which are substituted with single α-D-galactopyranose residues at C-6.  相似文献   

18.
Water-soluble polysaccharide fractions VO1–VO4 were isolated from the squeezed berries of the snowball tree (Viburnum opulus) by successive extraction with water at various temperatures and pH and with aqueous solutions of ammonium oxalate. These fractions were purified by ion-exchange chromatography on DEAE cellulose, and the homogeneity of the purified polysaccharides was determined by gel filtration on Sephacryl S-500. Acidic polysaccharides close to pectins in their sugar composition were found in all the extracts (fractions VO1-1, VO2-1, VO3-2, and VO4-2). Residues of galacturonic acid, galactose, arabinose, and (to a lesser extent) rhamnose are their main constituents. Neutral polysaccharides composed mainly of galactose and mannose residues were additionally found in fractions extracted with acidified water (pH 4.0) and with aqueous ammonium oxalate solutions. Partial acidic hydrolysis and digestion with pectinase of acidic polysaccharides indicated that their carbohydrate backbone consists of α-1,4-linked residues ofD-galacturonic acid. NMR spectra of acidic polysaccharides (fractions VO3-2 and VO3-3) confirmed this and demonstrated that their side oligosaccharide chains are composed of β-1,4-linked galactopyranose residues and of terminal and 2,5- and 3,5-substituted residues of α-arabinofuranose at a Gal : Ara ratio of 3 : 1. Some polysaccharides fromV. opulus were found to possess an immunostimulating activity: they enhance phagocytosis, in particular, the phagocytic index and the secretion of lysosomal enzymes with peritoneal macrophages. Calcium ions were found to be necessary for the appearance of the stimulating effect of acidic polysaccharides fromV. opulus.  相似文献   

19.
An acid α-galactosidase from the seeds of the jack fruit seed (Artocarpus integrifolia) has been purified to homogeneity by affinity chromatography on a matrix formed by cross-linking the soluble α-galactose-bearing guar seed galactomannan. The 35kDa enzyme was a homotetramer of 9.5kDa subunits. Its carbohydrate part (5.5%) was composed of galactose and arabinose. TheK m withp-nitrophenyl α-D-galactoside as substrate was 0.35 mM. TheK i values indicated inhibition by galactose, 1-O-methyl α-galactose and melibiose in the decreasing order. Among α-galactosides, the enzyme liberated galactose from melibiose, but not from raffinose or stachyose at its pH optimum (5.2). The guar seed galactomannan was however efficiently degalactosidated; limited enzyme treatment abolished the precipitability of the polysaccharide by the α-galactose-specific jack fruit seed lectin, and complete hydrolysis yielded insoluble polysaccharide. Though similar in sugar specificity and subunit assembly, α-galactosidase and the lectin coexisting in the jack fruit seed gave no indication of immunological identity.  相似文献   

20.
Enzymes that convert starch and dextrins to α,α-trehalose and glucose were found in cell homogenates of the hyperthermophilic acidophilic archaeon Sulfolobus shibatae DMS 5389. Three enzymes were purified and characterized. The first, the S. shibatae trehalosyl dextrin-forming enzyme (SsTDFE), transformed starch and dextrins to the corresponding trehalosyl derivatives with an intramolecular transglycosylation process that converted the glucosidic linkage at the reducing end from α-1,4 to α-1,1. The second, the S. shibatae trehalose-forming enzyme (SsTFE), hydrolyzed the α-1,4 linkage adjacent to the α-1,1 bond of trehalosyl dextrins, forming trehalose and lower molecular weight dextrins. These two enzymes had molecular masses of 80 kDa and 65 kDa, respectively, and showed the highest activities at pH 4.5. The apparent optimal temperature for activity was 70°C for SsTDFE and 85°C for SsTFE. The third enzyme identified was an α-glycosidase (SsαGly), which catalyzed the hydrolysis of the α-1,4 glucosidic linkages in starch and dextrins, releasing glucose in a stepwise manner from the nonreducing end of the polysaccharide chain. The enzyme had a molecular mass of 313 kDa and showed the highest activity at pH 5.5 and at 85°C. Received: October 29, 1997 / Accepted: April 29, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号