首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of locked nucleic acid (LNA) modification position upon representative DNA polymerase and exonuclease activities has been examined for potential use in primer extension genotyping applications. For the 3′→5′ exonuclease activities of four proofreading DNA polymerases (Vent, Pfu, Klenow fragment and T7 DNA polymerase) as well as exonuclease III, an LNA at the terminal (L-1) position of a primer is found to provide partial protection against the exonucleases of the two family B polymerases only. In contrast, an LNA residue at the penultimate (L-2) position generates essentially complete nuclease resistance. The polymerase active sites of these enzymes also display a distinct preference. An L-1 LNA modification has modest effects upon poly merization, but an L-2 LNA group slows dTTP incorporation somewhat while virtually abolishing extension with ddTTP or acyTTP terminators, even with A488L Vent DNA polymerase engineered for terminator incorporation. These observations on active site preference have been utilized to demonstrate two novel assays: exonuclease-mediated single base extension (E-SBE) and proofreading allele-specific extension (PRASE). We show that a model PRASE genotyping reaction with L-2 LNA primers offers greater specificity than existing non-proofreading assays, whether or not the non-proofreading reaction employs LNA-modified primers.  相似文献   

2.
The nuclease activity of FEN-1 is essential for both DNA replication and repair. Intermediate DNA products formed during these processes possess a variety of structures and termini. We have previously demonstrated that the 5′→3′ exonuclease activity of the Schizosaccharomyces pombe FEN-1 protein Rad2p requires a 5′-phosphoryl moiety to efficiently degrade a nick-containing substrate in a reconstituted alternative excision repair system. Here we report the effect of different 5′-terminal moieties of a variety of DNA substrates on Rad2p activity. We also show that Rad2p possesses a 5′→3′ single-stranded exonuclease activity, similar to Saccharomyces cerevisiae Rad27p and phage T5 5′→3′ exonuclease (also a FEN-1 homolog). FEN-1 nucleases have been associated with the base excision repair pathway, specifically processing cleaved abasic sites. Because several enzymes cleave abasic sites through different mechanisms resulting in different 5′-termini, we investigated the ability of Rad2p to process several different types of cleaved abasic sites. With varying efficiency, Rad2p degrades the products of an abasic site cleaved by Escherichia coli endonuclease III and endonuclease IV (prototype AP endonucleases) and S.pombe Uve1p. These results provide important insights into the roles of Rad2p in DNA repair processes in S.pombe.  相似文献   

3.
Bacterial exonuclease III (ExoIII) is a multifunctional enzyme that uses a single active site to perform two conspicuous activities: (i) apurinic/apyrimidinic (AP)-endonuclease and (ii) 3′→5′ exonuclease activities. The AP endonuclease activity results in AP site incision, while the exonuclease activity results in the continuous excision of 3′ terminal nucleobases to generate a partial duplex for recruiting the downstream DNA polymerase during the base excision repair process (BER). The key determinants of functional selection between the two activities are poorly understood. Here, we use a series of mutational analyses and single-molecule imaging to unravel the pivotal rules governing these endo- and exonuclease activities at the single amino acid level. An aromatic residue, either W212 or F213, recognizes AP sites to allow for the AP endonuclease activity, and the F213 residue also participates in the stabilization of the melted state of the 3′ terminal nucleobases, leading to the catalytically competent state that activates the 3′→5′ exonuclease activity. During exonucleolytic cleavage, the DNA substrate must be maintained as a B-form helix through a series of phosphate-stabilizing residues (R90, Y109, K121 and N153). Our work decouples the AP endonuclease and exonuclease activities of ExoIII and provides insights into how this multifunctional enzyme controls each function at the amino acid level.  相似文献   

4.
The human HD domain protein SAMHD1 is implicated in the Aicardi-Goutières autoimmune syndrome and in the restriction of HIV-1 replication in myeloid cells. Recently, this protein has been shown to possess dNTP triphosphatase activity, which is proposed to inhibit HIV-1 replication and the autoimmune response by hydrolyzing cellular dNTPs. Here, we show that the purified full-length human SAMHD1 protein also possesses metal-dependent 3′→5′ exonuclease activity against single-stranded DNAs and RNAs in vitro. In double-stranded substrates, this protein preferentially cleaved 3′-overhangs and RNA in blunt-ended DNA/RNA duplexes. Full-length SAMHD1 also exhibited strong DNA and RNA binding to substrates with complex secondary structures. Both nuclease and dNTP triphosphatase activities of SAMHD1 are associated with its HD domain, but the SAM domain is required for maximal activity and nucleic acid binding. The nuclease activity of SAMHD1 could represent an additional mechanism contributing to HIV-1 restriction and suppression of the autoimmune response through direct cleavage of viral and endogenous nucleic acids. In addition, we demonstrated the presence of dGTP triphosphohydrolase and nuclease activities in several microbial HD domain proteins, suggesting that these proteins might contribute to antiviral defense in prokaryotes.  相似文献   

5.
During the establishment of an infection, bacterial pathogens encounter oxidative stress resulting in the production of DNA lesions. Majority of these lesions are repaired by base excision repair (BER) pathway. Amongst these, abasic sites are the most frequent lesions in DNA. Class II apurinic/apyrimidinic (AP) endonucleases play a major role in BER of damaged DNA comprising of abasic sites. Mycobacterium tuberculosis, a deadly pathogen, resides in the human macrophages and is continually subjected to oxidative assaults. We have characterized for the first time two AP endonucleases namely Endonuclease IV (End) and Exonuclease III (XthA) that perform distinct functions in M.tuberculosis. We demonstrate that M.tuberculosis End is a typical AP endonuclease while XthA is predominantly a 3′→5′ exonuclease. The AP endonuclease activity of End and XthA was stimulated by Mg2+ and Ca2+ and displayed a preferential recognition for abasic site paired opposite to a cytosine residue in DNA. Moreover, End exhibited metal ion independent 3′→5′ exonuclease activity while in the case of XthA this activity was metal ion dependent. We demonstrate that End is not only a more efficient AP endonuclease than XthA but it also represents the major AP endonuclease activity in M.tuberculosis and plays a crucial role in defense against oxidative stress.  相似文献   

6.
Werner’s syndrome (WS) is an autosomal recessive disorder in humans characterized by the premature development of a partial array of age-associated pathologies. WRN, the gene defective in WS, encodes a 1432 amino acid protein (hWRN) with intrinsic 3′→5′ DNA helicase activity. We recently showed that hWRN is also a 3′→5′ exonuclease. Here, we further characterize the hWRN exonuclease. hWRN efficiently degraded the 3′ recessed strands of double-stranded DNA or a DNA–RNA heteroduplex. It had little or no activity on blunt-ended DNA, DNA with a 3′ protruding strand, or single-stranded DNA. The hWRN exonuclease efficiently removed a mismatched nucleotide at a 3′ recessed terminus, and was capable of initiating DNA degradation from a 12-nt gap, or a nick. We further show that the mouse WRN (mWRN) is also a 3′→5′ exonuclease, with substrate specificity similar to that of hWRN. Finally, we show that hWRN forms a trimer and interacts with the proliferating cell nuclear antigen in vitro. These findings provide new data on the biochemical activities of WRN that may help elucidate its role(s) in DNA metabolism.  相似文献   

7.
Replicative DNA polymerases possess 3′ → 5′ exonuclease activity to reduce misincorporation of incorrect nucleotides by proofreading during replication. To examine if this proofreading activity modulates DNA synthesis of damaged templates, we constructed a series of recombinant human DNA polymerase δ (Pol δ) in which one or two of the three conserved Asp residues in the exonuclease domain are mutated, and compared their properties with that of the wild-type enzyme. While all the mutant enzymes lost more than 95% exonuclease activity and severely decreased the proofreading activity than the wild-type, the bypass efficiency of damaged templates was varied: two mutant enzymes, D515V and D402A/D515A, gave higher bypass efficiencies on templates containing an abasic site, but another mutant, D316N/D515A, showed a lower bypass efficiency than the wild-type. All the enzymes including the wild-type inserted an adenine opposite the abasic site, whereas these enzymes inserted cytosine and adenine opposite an 8-oxoguanine with a ratio of 6:4. These results indicate that the exonuclease activity of human Pol δ modulates its intrinsic bypass efficiency on the damaged template, but does not affect the choice of nucleotide to be inserted.  相似文献   

8.
Shen JC  Loeb LA 《Nucleic acids research》2000,28(17):3260-3268
Werner syndrome (WS) is an autosomal recessive disease characterized by early onset of many features of aging, by an unusual spectrum of cancers, and by genomic instability. The WS protein (WRN) possesses 3′→5′ DNA helicase and associated ATPase activities, as well as 3′→5′ DNA exonuclease activity. Currently, WRN is the only member of the widely distributed RecQ DNA helicase family with documented exonuclease activity. It is not known whether deficiency of the exonuclease or helicase/ATPase activities of WRN, or all of them, is responsible for various elements of the WS phenotype. WRN exonuclease has limited homology to Escherichia coli RNaseD, a tRNA processing enzyme. We show here that WRN preferentially degrades synthetic DNA substrates containing alternate secondary structures, with an exonucleolytic mode of action suggestive of RNaseD. We present evidence that structure-dependent binding of WRN to DNA requires ATP binding, while DNA degradation requires ATP hydrolysis. Apparently, the exonuclease and ATPase act in concert to catalyze structure-dependent DNA degradation. We propose that WRN protein functions as a DNA processing enzyme in resolving aberrant DNA structures via both exonuclease and helicase activities.  相似文献   

9.
Most eukaryotic DNA replication is performed by A- and B-family DNA polymerases which possess a faithful polymerase activity that preferentially incorporates correct over incorrect nucleotides. Additionally, many replicative polymerases have an efficient 3′→5′ exonuclease activity that excises misincorporated nucleotides. Together, these activities contribute to overall low polymerase error frequency (one error per 106–108 incorporations) and support faithful eukaryotic genome replication. Eukaryotic DNA polymerase ϵ (Polϵ) is one of three main replicative DNA polymerases for nuclear genomic replication and is responsible for leading strand synthesis. Here, we employed pre-steady-state kinetic methods and determined the overall fidelity of human Polϵ (hPolϵ) by measuring the individual contributions of its polymerase and 3′→5′ exonuclease activities. The polymerase activity of hPolϵ has a high base substitution fidelity (10−4–10−7) resulting from large decreases in both nucleotide incorporation rate constants and ground-state binding affinities for incorrect relative to correct nucleotides. The 3′→5′ exonuclease activity of hPolϵ further enhances polymerization fidelity by an unprecedented 3.5 × 102 to 1.2 × 104-fold. The resulting overall fidelity of hPolϵ (10−6–10−11) justifies hPolϵ to be a primary enzyme to replicate human nuclear genome (0.1–1.0 error per round). Consistently, somatic mutations in hPolϵ, which decrease its exonuclease activity, are connected with mutator phenotypes and cancer formation.  相似文献   

10.
In eukaryotic DNA replication, DNA polymerase ε (Polε) is responsible for leading strand synthesis, whereas DNA polymerases α and δ synthesize the lagging strand. The human Polε (hPolε) holoenzyme is comprised of the catalytic p261 subunit and the noncatalytic p59, p17, and p12 small subunits. So far, the contribution of the noncatalytic subunits to hPolε function is not well understood. Using pre-steady-state kinetic methods, we established a minimal kinetic mechanism for DNA polymerization and editing catalyzed by the hPolε holoenzyme. Compared with the 140-kDa N-terminal catalytic fragment of p261 (p261N), which we kinetically characterized in our earlier studies, the presence of the p261 C-terminal domain (p261C) and the three small subunits increased the DNA binding affinity and the base substitution fidelity. Although the small subunits enhanced correct nucleotide incorporation efficiency, there was a wide range of rate constants when incorporating a correct nucleotide over a single-base mismatch. Surprisingly, the 3′→5′ exonuclease activity of the hPolε holoenzyme was significantly slower than that of p261N when editing both matched and mismatched DNA substrates. This suggests that the presence of p261C and the three small subunits regulates the 3′→5′ exonuclease activity of the hPolε holoenzyme. Together, the 3′→5′ exonuclease activity and the variable mismatch extension activity modulate the overall fidelity of the hPolε holoenzyme by up to 3 orders of magnitude. Thus, the presence of p261C and the three noncatalytic subunits optimizes the dual enzymatic activities of the catalytic p261 subunit and makes the hPolε holoenzyme an efficient and faithful replicative DNA polymerase.  相似文献   

11.
Reaction intermediates formed during the degradation of linear PM2, T5, and λ DNA by herpes simplex virus (HSV) DNase have been examined by agarose gel electrophoresis. Digestion of T5 DNA by HSV type 2 (HSV-2) DNase in the presence of Mn2+ (endonuclease only) gave rise to 6 major and 12 minor fragments. Some of the fragments produced correspond to those observed after cleavage of T5 DNA by the single-strand-specific S1 nuclease, indicating that the HSV DNase rapidly cleaves opposite a nick or gap in a duplex DNA molecule. In contrast, HSV DNase did not produce distinct fragments upon digestion of linear PM2 or λ DNA, which do not contain nicks. In the presence of Mg2+, when both endonuclease and exonuclease activities of the HSV DNase occur, most of the same distinct fragments from digestion of T5 DNA were observed. However, these fragments were then further degraded preferentially from the ends, presumably by the action of the exonuclease activity. Unit-length λ DNA, EcoRI restriction fragments of λ DNA, and linear PM2 DNA were also degraded from the ends by HSV DNase in the same manner. Previous studies have suggested that the HSV exonuclease degrades in the 3′ → 5′ direction. If this is correct, and since only 5′-monophosphate nucleosides are produced, then HSV DNase should “activate” DNA for DNA polymerase. However, unlike pancreatic DNase I, neither HSV-1 nor HSV-2 DNase, in the presence of Mg2+ or Mn2+, activated calf thymus DNA for HSV DNA polymerase. This suggests that HSV DNase degrades both strands of a linear double-stranded DNA molecule from the same end at about the same rate. That is, HSV DNase is apparently capable of degrading DNA strands in the 3′ → 5′ direction as well as in the 5′ → 3′ direction, yielding progressively smaller double-stranded molecules with flush ends. Except with minor differences, HSV-1 and HSV-2 DNases act in a similar manner.  相似文献   

12.
Oligodeoxynucleotides (ODNs) containing 5-formyl-2′-deoxycytidine (fC) were synthesized by the phosphoramidite method and subsequent oxidation with sodium periodate. The stabilities of duplexes containing A, G, C or T opposite fC were studied by thermal denaturation. It was found that fC:A, fC:C or fC:T base pairs significantly reduce the thermal stabilities of duplexes. Next, single nucleotide insertion reactions were performed using ODNs containing fC as templates and the Klenow fragment of Escherichia coli DNA polymerase I. It was found that: (i) insertion of dGMP opposite fC appears to be less efficient relative to insertion opposite 5-methyl-2′-deoxycytidine (mC); (ii) dAMP is misincorporated more frequently opposite fC than mC, although the frequency of misincorporation seems to be dependent on the sequence; (iii) TMP is misincorporated more frequently opposite fC than mC. These results suggest that fC may induce the transition mutation C·G→T·A and the transversion mutation C·G→A·T during DNA synthesis.  相似文献   

13.
Methylglyoxal, a known endogenous and environmental mutagen, is a reactive α-ketoaldehyde that can modify both DNA and proteins. To investigate the possibility that methylglyoxal induces a crosslink between DNA and DNA polymerase, we treated a ‘primed template’ DNA and the exonuclease-deficient Klenow fragment (KFexo–) of DNA polymerase I with methylglyoxal in vitro. When the reaction mixtures were analyzed by SDS–PAGE, we found that methylglyoxal induced a DNA–KFexo– crosslink. The specific binding complex of KFexo– and ‘primed template’ DNA was necessary for formation of the DNA–KFexo– crosslink. Methylglyoxal reacted with guanine residues in the single-stranded portion of the template DNA. When 2′-deoxyguanosine was incubated with Nα-acetyllysine or N-acetylcysteine in the presence of methylglyoxal, a crosslinked product was formed. No other amino acid derivatives tested could generate a crosslinked product. These results suggest that methylglyoxal crosslinks a guanine residue of the substrate DNA and lysine and cysteine residues near the binding site of the DNA polymerase during DNA synthesis and that DNA replication is severely inhibited by the methylglyoxal-induced DNA–DNA polymerase crosslink.  相似文献   

14.
The objectives of this study are to evaluate the structure and protein recognition features of branched DNA four-way junctions in an effort to explore the therapeutic potential of these molecules. The classic immobile DNA 4WJ, J1, is used as a matrix to design novel intramolecular junctions including natural and phosphorothioate bonds. Here we have inserted H2-type mini-hairpins into the helical termini of the arms of J1 to generate four novel intramolecular four-way junctions. Hairpins are inserted to reduce end fraying and effectively eliminate potential nuclease binding sites. We compare the structure and protein recognition features of J1 with four intramolecular four-way junctions: i-J1, i-J1(PS1), i-J1(PS2) and i-J1(PS3). Circular dichroism studies suggest that the secondary structure of each intramolecular 4WJ is composed predominantly of B-form helices. Thermal unfolding studies indicate that intramolecular four-way junctions are significantly more stable than J1. The Tm values of the hairpin four-way junctions are 25.2° to 32.2°C higher than the control, J1. With respect to protein recognition, gel shift assays reveal that the DNA-binding proteins HMGBb1 and HMGB1 bind the hairpin four-way junctions with affinity levels similar to control, J1. To evaluate nuclease resistance, four-way junctions are incubated with DNase I, exonuclease III (Exo III) and T5 exonuclease (T5 Exo). The enzymes probe nucleic acid cleavage that occurs non-specifically (DNase I) and in a 5ʹ→3ʹ (T5 Exo) and 3ʹ→5ʹ direction (Exo III). The nuclease digestion assays clearly show that the intramolecular four-way junctions possess significantly higher nuclease resistance than the control, J1.  相似文献   

15.
The human Werner syndrome protein, WRN, is a member of the RecQ helicase family and contains 3′→5′ helicase and 3′→5′ exonuclease activities. Recently, we showed that the exonuclease activity of WRN is greatly stimulated by the human Ku heterodimer protein. We have now mapped this interaction physically and functionally. The Ku70 subunit specifically interacts with the N-terminus (amino acids 1–368) of WRN, while the Ku80 subunit interacts with its C-terminus (amino acids 940– 1432). Binding between Ku70 and the N-terminus of WRN (amino acids 1–368) is sufficient for stimulation of WRN exonuclease activity. A mutant Ku heterodimer of full-length Ku80 and truncated Ku70 (amino acids 430–542) interacts with C-WRN but not with N-WRN and cannot stimulate WRN exonuclease activity. This emphasizes the functional significance of the interaction between the N-terminus of WRN and Ku70. The interaction between Ku80 and the C-terminus of WRN may modulate some other, as yet unknown, function. The strong interaction between Ku and WRN suggests that these two proteins function together in one or more pathways of DNA metabolism.  相似文献   

16.
Enzymes with 3′-5′ exonuclease activities are important in promoting the accuracy of DNA replication and DNA repair by proofreading. The alteration of the function of these enzymes by endogenous or exogenous effectors could, therefore, have a considerable impact on DNA replication and ultimately on genome integrity. We have developed a label-free high-throughput screening method for quantifying the effects of different reagents on exonuclease activity. The assay is based on a hairpin-forming biotinylated oligonucleotide substrate that contains one or more exonuclease-resistant phosphorothioate nucleotides. The activity and specificity of the selected 3′-5′ exonuclease is determined indirectly using a sensitive pyrosequencing reaction after cleanup of the samples. In this pyrosequencing step, the amount of nucleotides filled into each position of the exonucleolytically degraded 3′ end of the substrate can be recorded quantitatively and equals the amount of the nucleotides removed by the exonuclease. This system allows the estimation of both processivity and efficiency of the exonuclease activity. We have employed compounds reported in the literature to inhibit the exonuclease activities of either exonuclease III or the large fragment of polymerase I (Klenow fragment) to evaluate the assay.  相似文献   

17.
Incremental truncation for the creation of hybrid enzymes (ITCHY) is a novel tool for the generation of combinatorial libraries of hybrid proteins independent of DNA sequence homology. We herein report a fundamentally different methodology for creating incremental truncation libraries using nucleotide triphosphate analogs. Central to the method is the polymerase catalyzed, low frequency, random incorporation of α-phosphothioate dNTPs into the region of DNA targeted for truncation. The resulting phosphothioate internucleotide linkages are resistant to 3′→5′ exonuclease hydrolysis, rendering the target DNA resistant to degradation in a subsequent exonuclease III treatment. From an experimental perspective the protocol reported here to create incremental truncation libraries is simpler and less time consuming than previous approaches by combining the two gene fragments in a single vector and eliminating additional purification steps. As proof of principle, an incremental truncation library of fusions between the N-terminal fragment of Escherichia coli glycinamide ribonucleotide formyltransferase (PurN) and the C-terminal fragment of human glycinamide ribonucleotide formyltransferase (hGART) was prepared and successfully tested for functional hybrids in an auxotrophic E.coli host strain. Multiple active hybrid enzymes were identified, including ones fused in regions of low sequence homology.  相似文献   

18.
Replication of DNA containing 7,8-dihydro-8-oxo-2′-deoxyguanosine (OxodG) gives rise to G → T transversions. The syn-isomer of the lesion directs misincorporation of 2′-deoxyadenosine (dA) opposite it. We investigated the role of the 2-amino substituent on duplex thermal stability and in replication using 7,8-dihydro-8-oxo-2′-deoxyinosine (OxodI). Oligonucleotides containing OxodI at defined sites were chemically synthesized via solid phase synthesis. Translesion incorporation opposite OxodI was compared with 7,8-dihydro-8-oxo-2′-deoxyguanosine (OxodG), 2′-deoxyinosine (dI) and 2′-deoxyguanosine (dG) in otherwise identical templates. The Klenow exo fragment of Escherichia coli DNA polymerase I incorporated 2′-deoxyadenosine (dA) six times more frequently than 2′-deoxycytidine (dC) opposite OxodI. Preferential translesion incorporation of dA was unique to OxodI. UV-melting experiments revealed that DNA containing OxodI opposite dA is more stable than when the modified nucleotide is opposed by dC. These data suggest that while duplex DNA accommodates the 2-amino group in syn-OxodG, this substituent is thermally destabilizing and does not provide a kinetic inducement for replication by Klenow exo.  相似文献   

19.
W Zhu  J Ito 《Nucleic acids research》1994,22(24):5177-5183
In order to establish the evolutionary relationship between the family A and B DNA polymerases, we have closely compared the 3'-->5' exonuclease domains between the Klenow fragment of E.coli DNA polymerase I (a family A DNA polymerase) and the bacteriophage PRD1 DNA polymerase, the smallest member of the DNA polymerase family B. Although the PRD1 DNA polymerase has a smaller 3'-->5' exonuclease domain, its active sites appear to be very similar to those of the Klenow fragment. Site-directed mutagenesis studies revealed that the residues important for the 3'-->5' exonuclease activity, particularly metal binding ligands for the Klenow fragment, are all conserved in the PRD1 DNA polymerase as well. The metal binding ligands are also essential for the strand-displacement activity of the PRD1 DNA polymerase. Based on these results and the studies by others in various systems, we conclude that family A and B DNA polymerases, at least in the 3'-->5' exonuclease domain, are structurally as well as evolutionarily related.  相似文献   

20.
λ Exonuclease is a highly processive 5′→3′ exonuclease that degrades double-stranded (ds)DNA. The single-stranded DNA produced by λ exonuclease is utilized by homologous pairing proteins to carry out homologous recombination. The extensive studies of λ biology, λ exonuclease enzymology and the availability of the X-ray crystallographic structure of λ exonuclease make it a suitable model to dissect the mechanisms of processivity. λ Exonuclease is a toroidal homotrimeric molecule and this quaternary structure is a recurring theme in proteins engaged in processive reactions in nucleic acid metabolism. We have identified residues in λ exonuclease involved in recognizing the 5′-phosphate at the ends of broken dsDNA. The preference of λ exonuclease for a phosphate moiety at 5′ dsDNA ends has been established in previous studies; our results indicate that the low activity in the absence of the 5′-phosphate is due to the formation of inert enzyme–substrate complexes. By examining a λ exonuclease mutant impaired in 5′-phosphate recognition, the significance of catalytic efficiency in modulating the processivity of λ exonuclease has been elucidated. We propose a model in which processivity of λ exonuclease is expressed as the net result of competition between pathways that either induce forward translocation or promote reverse translocation and dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号