首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to examine the hypothesis that acceleration of gap junction (GJ) closure during ischemia contributes to anti-infarct tolerance afforded by preconditioning (PC). First, the effects of PC on GJ communication during ischemia were assessed. Isolated buffer-perfused rabbit hearts were subjected to 5-min global ischemia with or without PC with two cycles of 5-min ischemia/5-min reperfusion or a GJ blocker (2 mM heptanol), and then the tissue excised from the ischemic region was incubated in anoxic buffer containing lucifer yellow (LY; 2.5 mg/ml), a tracer of GJ permeability, for 20 min at 37 degrees C. PC and heptanol significantly reduced the area to which LY was transported in the ischemic myocardium by 39% and by 54%, respectively. In the second series of experiments, three GJ blockers (heptanol, 18beta-glycyrrhetinic acid, and 2,3-butanedione monoxime) infused after the onset of ischemia reduced infarct size after 30-min ischemia/2-h reperfusion to an extent equivalent to that in the case of PC. In the third series of experiments, Western blotting for connexin43 (Cx43) showed that PC shortened the time to the onset of ischemia-induced Cx43 dephosphorylation but reduced the extent of Cx43 dephosphorylation during a 30-min period of ischemia. Calphostin C, a protein kinase C (PKC) inhibitor, abolished preservation of phosphorylated Cx43 but not the early onset of Cx43 dephosphorylation after ischemia in the preconditioned myocardium. These results suggest that PC-induced reduction of GJ permeability during ischemia, presumably by PKC-mediated Cx43 phosphorylation, contributes to infarct size limitation.  相似文献   

2.
The gap junction protein connexin-43 (Cx43) exists mainly in the phosphorylated state in the normal heart, while ischemia induces dephosphorylation. Phosphatase(s) involved in cardiac Cx43 dephosphorylation have not as yet been identified. We examined the acute effects of ischemia on the dephosphorylation of the gap junction protein connexin-43 in isolated adult cardiomyocytes and isolated perfused hearts. In addition we tested the effectiveness of protein phosphatase 1 and 2A (PP1/2A) inhibitors in preventing Cx43 dephosphorylation. In both models, significant accumulation of the 41 kDa non-phosphorylated Cx43, accompanied by decreased relative levels of the 43–46 kDa phosphorylated Cx43, was observed at 30 min of ischemia. Okadaic acid decreased ischemia-induced Cx43 dephosphorylation; it also decreased the accumulation of non-phosphorylated Cx43 at the intercalated discs of myocytes in the whole heart. Calyculin A, but not fostriecin, also decreased ischemia-induced Cx43 dephosphorylation in isolated cardiomyocytes. It is concluded that isolated adult myocytes respond to ischemia in a manner similar to whole hearts and that ischemia-induced dephosphorylation of Cx43 is mediated, at least in part, by PP1-like phosphatase(s).  相似文献   

3.
Cardiac connexin 43 (Cx43) is involved in infarct propagation, and the uncoupling of Cx43-formed channels reduces infarct size. Cx43-formed channels open upon Cx43 dephosphorylation, and ischemic preconditioning (IP) prevents the ischemia-induced Cx43 dephosphorylation. In addition to the sarcolemma, Cx43 is also present in the cardiomyocyte mitochondria. We now examined the interaction of Cx43 with protein phosphatases PP1alpha, PP2Aalpha, and PP2Balpha and the role of such interaction for Cx43 phosphorylation in preconditioned myocardium. Infarct size (in %area at risk) in left ventricular anterior myocardium of G?ttinger minipigs subjected to 90 min of low-flow ischemia and 120 min of reperfusion was 23.1 +/- 2.7 [n = 7, nonpreconditioned (NIP) group] and was reduced by IP to 10.0 +/- 3.2 (n = 6, P < 0.05). Mitochondrial and gap junctional Cx43 dephosphorylation increased after 85 min of ischemia in NIP myocardium, whereas Cx43 phosphorylation was preserved with IP. PP2Aalpha and PP1alpha, but not PP2Balpha, were detected by Western blot analysis in the left ventricular myocardium. Cx43 coprecipitated with PP2Aalpha but not with PP1alpha. Although the total PP2Aalpha immunoreactivity (confocal laser scan) was increased to 154 +/- 24% and 194 +/- 13% of baseline (P < 0.05) after 85 min of ischemia in NIP and IP myocardium, respectively, the PP2A activities were similar between the groups. The amount of PP2Aalpha coimmunoprecipitated with Cx43 remained unchanged. Only PP2Aalpha coprecipitates with Cx43 in pig myocardium. This interaction is not affected by IP, suggesting that PP2Aalpha is not involved in the prevention of the ischemia-induced Cx43 dephosphorylation by IP.  相似文献   

4.
Connexin 43 (Cx43) is localized at left ventricular (LV) gap junctions and in cardiomyocyte mitochondria. A genetically induced reduction of Cx43 as well as blockade of mitochondrial Cx43 import abolishes the infarct size (IS) reduction by ischemic preconditioning (IP). With progressing age, Cx43 content in ventricular and atrial tissue homogenates is reduced. We now investigated whether or not 1) the mitochondrial Cx43 content is reduced in aged mice hearts and 2) IS reduction by IP is lost in aged mice hearts in vivo. Confirming previous results, sarcolemmal Cx43 content was reduced in aged (>13 mo) compared with young (<3 mo) C57Bl/6 mice hearts, whereas the expression levels of protein kinase C epsilon and endothelial nitric oxide synthase remained unchanged. Also in mitochondria isolated from aged mice LV myocardium, Western blot analysis indicated a 40% decrease in Cx43 content compared with mitochondria isolated from young mice hearts. In young mice hearts, IP by one cycle of 10 min ischemia and 10 min reperfusion reduced IS (% of area at risk) following 30 min regional ischemia and 120 min reperfusion from 67.7 +/- 3.3 (n = 17) to 34.2 +/- 6.6 (n = 5, P < 0.05). In contrast, IP's cardioprotection was lost in aged mice hearts, since IS in nonpreconditioned (57.5 +/- 4.0, n = 10) and preconditioned hearts (65.4 +/- 6.3, n = 8, P = not significant) was not different. In conclusion, mitochondrial Cx43 content is decreased in aged mouse hearts. The reduced levels of Cx43 may contribute to the age-related loss of cardioprotection by IP.  相似文献   

5.
The primary purpose of this study is to determine the extent to which the effects of dietary supplementation of the female chicken with selenium (Se) continue into the next generation. An additional aim is to compare the relative effectiveness of pre-hatch (from the hen's diet) with that of post-hatch (from the progeny's diet) supplementation with Se on the Se status of the chick during the first 4 weeks of post-hatch life. Hens were maintained on control or Se-supplemented diets, respectively containing 0.027 and 0.419 μg Se/g of feed. The high-Se diet elevated the Se content of the hens' eggs by 7.1-fold. At hatch, the concentrations of Se in the liver, breast muscle and whole blood of the chicks originating from the high-Se parents were, respectively, 5.4-, 4.3- and 7.7-fold higher than the values in the chicks of the low-Se parents. When the offspring from the two parental groups were both maintained on the low-Se progeny diet, the tissue Se concentrations in chicks originating from the high-Se hens remained significantly higher for 3–4 weeks after hatching, compared with the values in chicks from the low-Se hens. Similarly, tissue glutathione peroxidase activity remained significantly higher in chicks from the high-Se hens for 2–4 weeks post-hatch. Thus, the effects of maternal Se supplementation persist in the progeny for several weeks after hatching. However, when chicks hatching from low-Se eggs were placed on a high Se diet, their tissue Se concentrations at 7 days of age were markedly higher than the values in chicks from high-Se eggs placed on the low-Se diet.  相似文献   

6.
A transient reduction of cell coupling during reperfusion limits myocardial necrosis, but little is known about its arrhythmogenic effects during ischemia-reperfusion. Thus, we analyzed the effect of an extreme reduction in the number of gap junction channels or in their unitary conductance on ventricular arrhythmias during myocardial ischemia-reperfusion. Available gap junction uncouplers have electrophysiological effects independent from their uncoupling actions. Thus, isolated hearts from Cx43(Cre-ER(T)/fl) mice treated with 4-hydroxytamoxifen (4-OHT), from Cx43KI32 mice [in which connexin (Cx)43 was replaced with Cx32], and from control animals were submitted to regional ischemia and reperfusion, and spontaneous and induced ventricular arrhythmias were monitored. In additional hearts, changes in activation time and electrical impedance during global ischemia-reperfusion were assessed. In contrast to treatment with 4-OHT, replacement of Cx43 with Cx32 did not modify baseline activation time or electrical impedance. However, the number of extrasistole and ventricular tachyarrhythmias was higher in isolated hearts from Cx43KI32 and 4-OHT-treated Cx43(Cre-ER(T)/fl) animals versus wild-type animals during normoxia, ischemia (12.29 ± 3.26 and 52.17 ± 22.51 vs. 3.00 ± 1.46 spontaneous tachyarrhythmias, P < 0.05), and reperfusion. The impairment in conduction during ischemia was steeper in isolated hearts from Cx43KI32 animals, whereas changes in myocardial impedance were attenuated during ischemia in both transgenic models, suggesting altered cell-to-cell coupling at baseline. In conclusion, both reduction of Cx43 with 4-OHT and replacement of Cx43 by less-conductive Cx32 were arrhythmogenic under normoxia and ischemia-reperfusion, despite no major effects on baseline electrical properties. These results suggest that modifications in gap junction communication silent under normal conditions may be arrhythmogenic during ischemia-reperfusion.  相似文献   

7.
Cardioprotection by ischemic preconditioning (IP) was abolished in connexin 43 (Cx43)-deficient mice due to loss of Cx43 located in mitochondria rather than at the sarcolemma. IP is lost in hyperlipidemic rat hearts as well. Since changes in mitochondrial Cx43 in hyperlipidemia have not yet been analyzed, we determined total and mitochondrial Cx43 levels in male Wistar rats fed a laboratory chow enriched with 2% cholesterol or normal chow for 12 wk. Hearts were isolated and perfused according to Langendorff. After a 10-min perfusion, myocardial tissue cholesterol, superoxide, and nitrotyrosine contents were measured and Cx43 content in whole heart homogenate and a mitochondrial fraction determined. In the cholesterol-fed group, tissue cholesterol and superoxide formation was increased (P < 0.05), while total Cx43 content remained unchanged. Mitochondrial total and dephosphorylated Cx43 content decreased. Hearts were subjected to an IP protocol (3 × 5 min ischemia-reperfusion) or time-matched aerobic perfusion followed by 30-min global ischemia and 5-min reperfusion. IP reduced infarct size in normal but not in cholesterol-fed rats. At 5-min reperfusion following 30-min global ischemia, the total and dephosphorylated mitochondrial Cx43 content was increased, which was abolished by IP in both normal and high-cholesterol diet. In conclusion, loss of cardioprotection by IP in hyperlipidemia is associated with a redistribution of both sarcolemmal and mitochondrial Cx43.  相似文献   

8.
目的:探讨磷脂酰肌醇-3-激酶/蛋白激酶B(PI3K/Akt)信号通路在白藜芦醇抗缺血/再灌注性心律失常中的作用及机制。方法:48只健康雄性SD大鼠,取心电图正常者随机分为4组(n=10):假手术(SC组)组、缺血/再灌注(I/R组)组、白藜芦醇处理(Res处理组)组、PI3K抑制剂LY294002(LY294002组)组。建立大鼠在体心肌缺血/再灌注模型,观察各组心律失常的发生情况及左室血流动力学变化,Western blot法测定心肌组织中蛋白激酶B(Akt)、磷酸化蛋白激酶B(p-Akt)、缝隙连接蛋白43(Cx43)蛋白表达水平,以RT-PCR法从转录水平检测Cx43的表达水平。结果:与I/R组相比,Res处理组心律失常的发生率(心律失常评分)明显降低、左室舒缩功能明显升高,同时心肌Akt、Cx43蛋白表达及Cx43mRNA水平也明显升高;使用PI3K抑制剂LY294002后,心肌Akt、Cx43蛋白表达及Cx43mRNA水平下降的同时心律失常的发生率明显升高、左室舒缩功能明显降低。结论:白藜芦醇的抗再灌注性心律失常作用可能是通过激活PI3K/Akt信号通路,改变Cx43活性及分布实现的。  相似文献   

9.
In this investigation, an anti-thromboxane A2 (TXA2) synthetase activity in the myocardial tissue, which can be modulated by ischemia and reperfusion, was observed. Regional ischemia was induced by 60 min occlusion of the left anterior descending coronary artery in isolated Langendorff rabbit hearts. Biosynthesis of TXA2 was carried out by using arachidonic acid (AA) as substrate, horse platelet microsomes (HPM) as the source of TXA2 synthetase and left ventricle microsomes (LVM) from ischemic and non-ischemic areas as effectors TXB2, the stable metabolite of TXA2, was determined by radioimmunoassay. Experiments carried out under the adopted conditions showed that LVM from control hearts were able to inhibit by up to 50% the biosynthesis of TXA2 from HPM. This anti-TXA2 synthetase activity was more pronounced when LVM from the non-ischemic area were used, rather then LVM from the ischemic one. A 60 min reperfusion decreased the anti-TXA2 activity. A superfused rabbit aorta strip was also used as a cascade bioassay to study the effect of LVM on the TX2-synthetase activity of HPM, and this confirmed our findings. These results suggest that the left ventricle possesses a self-defense mechanism against acute myocardial ischemia, independently from the circulation. The postulated mechanism may be initiated in the non-ischemic area.  相似文献   

10.
In the heart, brief repeated episodes of ischemia prior to a sustained occlusion (ischemic preconditioning; PC) significantly delay the onset of necrosis and arrhythmogenesis. Ischemia has been reported to influence gap junction organization and connexin43 (Cx43) content, but whether PC affects these structures is not known. We investigated the effect of PC (2 cycles of 5-min ischemia plus 10-min reperfusion) followed by prolonged reperfusion without concomitant regional coronary occlusion on the myocardial Cx43 content and its spatial distribution in rabbit hearts. We also compared the effect of sustained ischemia with or without PC on Cx43 spatial distribution. In experiments with PC only, there was an initial decrease in Cx43 levels within the ischemic zone followed by a progressive increase after 48 h reperfusion. End-to-end immunolabeling of Cx43 was augmented in the ischemic region between 24 and 48 h reperfusion; labeling was not uniquely confined to myocyte abutments, but was also dispersed along the sarcolemma. Cx43 immunolabelling was more intense and diffuse in hearts subjected to PC before sustained coronary occlusion (compared to non-PC). These data indicate that gap junctions are significantly altered during brief episodes of ischemia. Reorganization of the gap junction complex could contribute to PC-mediated reductions in cardiac arrhythmias.  相似文献   

11.
Myocardial hypertrophy has been linked to the development of a variety of cardiovascular diseases, and is a risk factor for myocardial ischemia, arrhythmias, and sudden cardiac death. The objective of the present study was to evaluate the cardioprotective effects of Danshensu (DSS), a water-soluble active component of Danshen, on cardiac hypertrophy in rats. We are the first to report that DSS reversed Cx43 down-regulation in ventricular tissue. Cardiomyopathy in rats was produced using isoproterenol (Iso) treatment (2.5 mg/kg/d, s.c.) for seven days. DSS (3 and 10 mg/kg/d, i.p.) and Valsartan (Val) (10 mg/kg, i.g.) were administered on days 4-7 of Iso-treatment. Heart weight index, hemodynamic parameters, and ECG II parameters were monitored and recorded; protein expression of left ventricular connexin 43 (Cx43) and the activity of the redox system were assayed, and arrhythmias were produced using a coronary ligation/reperfusion procedure. The results demonstrated that DSS treatment significantly decreased heart weight/body weight (HW/BW) and left ventricular weight/body weight (LVW/BW) ratios. The protective role of DSS against Iso-induced myocardial hypertrophy was further confirmed using ECG. The incidences of ventricular tachycardia and ventricular fibrillation (VT, VF) and arrhythmic scores were higher in the model group and were suppressed by DSS. DSS decreased the serum and myocardium levels of creatine kinase, lactate dehydrogenase, and malondialdehyde (CK, LDH, and MDA) and increased serum activity of superoxide dismutase (SOD) in a dose-dependent manner. Cx43 expression in the left ventricle was down-regulated, and there was significant oxidative stress in this model of cardiomyopathy. DSS reversed the down-regulated Cx43 protein levels and showed potent anti-oxidative activities and cellular protection. These data demonstrate that DSS can prevent cardiac I/R injury and improve cardiac function in a rat model of hypertrophy, the effects partially resulting from antioxidants and the protection from Cx43 expression.  相似文献   

12.
The aim of the study was to determine the prostacyclin (PGI2) and thromboxane A2 (TXA2) synthetase activities of myocardial tissue and their variation during ischemia and reperfusion. Regional ischemia was induced by 10 min occlusion of the left anterior descending coronary artery in isolated Langendorff rabbit hearts. Biosynthesis of PGI2 and TXA2 were carried out by using arachidonic acid as substrate and left ventricle microsomes (LVM) from ischemic and non-ischemic areas as sources of PGI2 and TXA2 synthetase. 6-keto-PGF1 alpha and TXB2, stable metabolites of PGI2 and TXA2 respectively, were determined by radioimmunoassay. Experiments carried out under the adopted conditions showed that LVM were able to synthetise PGI2 as well as TXA2 from arachidonic acid. On the other hand, ischemia depressed both PGI2 and TXA2 synthetase activities of cardiac tissue: the depression was more pronounced on TXA2 synthetase than on PGI2 synthetase with no significant difference between ischemic and non-ischemic regions. Moreover, ischemia increased the ratio 6-keto-PGF1 alpha/TXB2 indicating therefore that it can facilitate the formation of PGI2. The post ischemic reperfusion of the heart counteracted the decrease in PGI2 synthetase induced by ischemia which returned to the normal level: reperfusion also slightly reversed the decrease in TXA2 the decrease in TXA2 synthetase. However, the diminution in TXA2 synthetase of non-ischemic myocardium was attenuated but it remained lower than the normal level. These results suggested that the whole left ventricle is affected by regional ischemia. Furthermore it appears that myocardial TXA2 synthetase is more vulnerable than PGI2 synthetase to a lack of oxygen and nutrients.  相似文献   

13.
Protein kinase Cepsilon (PKCepsilon) plays a central role in ischemic preconditioning (IP) in mice and rabbits, and activated PKCepsilon colocalizes with and phosphorylates connexin43 (Cx43) in rats and humans. Whether or not Cx43 contributes to the mechanism(s) of IP in vivo is yet unknown. Therefore, wild-type (n = 8) and heterozygous Cx43-deficient mice (n = 8) were subjected to 30 min occlusion and 120 min reperfusion of the left anterior descending coronary artery. IP was induced by one cycle of 5 min occlusion and 10 min reperfusion (n = 8/8 mice) before the sustained occlusion. Infarct size was reduced by IP in wild-type mice [11.3 +/- 3.4% vs. 23.7 +/- 7.2% of the left ventricle (LV), P < 0.05] but not in Cx43-deficient mice (26.0 +/- 6.0% vs. 25.1 +/- 3.8% of LV). Also, three cycles of 5 min occlusion and 10 min reperfusion (n = 5) did not induce protection in Cx43-deficient mice (27.6 +/- 5.5 % of LV). Thus Cx43 contributes to the protection of IP in mice in vivo.  相似文献   

14.
The objective of this study is to investigate the effects of preconditioning on the restoration and distribution of connexin 43 (Cx43) in ischemic myocardium in dogs. In this study, 40 dogs were randomly divided into 5 groups of 8 as follows: control, 0hI-R (ischemia followed by 0 h reperfusion), 6hI-R (ischemia followed by 6 h reperfusion), 24hI-R (ischemia followed by 24 h reperfusion), and 48hI-R (ischemia followed by 48 h reperfusion). Four dogs in each group were preconditioned with brief episodes of ischemia prior to the respective treatments and were referred as the PC groups, while the other 4 were not preconditioned and were referred as the nonPC groups. The myocardial ischemia was induced by ligation of the left anterior descending coronary artery. The expression and distribution of Cx43 within the ischemic myocardium were measured by Western blot analysis and studied using laser confocal microscopy using a double-label immunohistochemistry technique. Compared with the control group, there was a significant reduction in Cx43 content within ischemic myocardium of all test groups both with and without PC (P < 0.01, P < 0.05). Within the 0hI-R, 6hI-R, and 24hI-R groups, an insignificant difference was found in the expression and distribution of Cx43 within the ischemic region between the PC and the nonPC groups. However, in the 48hI-R group, the area and intensity of Cx43 staining within the ischemic region of the PC dogs were significantly larger and more intense than those of the nonPC dogs (P < 0.01), and the ratio of Cx43 pixel density in intercalated disk areas to that in side-to-side junction areas in the PC dogs was significantly greater than that in nonPC dogs (P < 0.01). Our results suggest that preconditioning has a significant effect on the restoration and distribution of Cx43 in the ischemic myocardium in dogs after 48 h. Hence, preconditioning may be a plausible cause for the observed reductions in cardiac arrhythmias.  相似文献   

15.
Endogenous glycogen stores are essential to maintain cell functions during myocardial ischemia.. Fasting and L-glutamate improve left ventricular function after an ischemic episode. We studied their effects on myocardial glycogen depletion during ischemia and on left ventricular function and glycogen resynthesis during reperfusion. We allocated 185 Wistar rats to 4 groups: 1) Control, 2) Fasting, 16-20 hours (Fast) 3) L-glutamate supplementation [100 mM] (Glt) or 4) Fasting + L-glutamate supplementation [100 mM]. n = 8-10 in each group. Hearts were mounted in an isolated perfused rat hearts model for 20 min stabilisation, 10/20/30 min ischemia and 60 min reperfusion. At each time point hearts were frozen in liquid nitrogen (-196 degrees C) within 2 seconds and myocardial contents of glycogen, lactate, alanine and glutamate were determined. Left ventricular pressure was measured continuously. Fasting and L-glutamate supplementation improved LV function after ischemia (Fast: p < 0.05, Glt: p < 0.01) and delayed myocardial glycogen depletion (Fast: p < 0.05, Glt: p < 0.01) compared to control. Decreased lactate accumulation and increased alanine content during ischemia were found in fasted (lactate: p < 0.05, alanine: p < 0.05) and L-glutamate supplemented (lactate: p < 0.01, alanine: p < 0.01) hearts compared to control. We did not find any additive effects of fasting and L-glutamate supplementation. In conclusion fasting and L-glutamate supplementation improve left ventricular function during reperfusion and delay myocardial glycogen depletion during ischemia. There were no additive effects of Fasting and L-glutamate supplementation. These finding suggest common metabolic pathways underlying the effects of L-glutamate supplementation and fasting.  相似文献   

16.
Background: Midazolam is a frequently used benzodiazepine in anaesthesiology and intensive care. Aim: The aim of pilot study was to monitor its effect during heart perfusion in the laboratory rat. Methods: The same groups of animals (n = 10). The 1(st) group was treated with midazolam in a dose of 0.5mg/kg i.p. The 2(nd) group was a placebo. After i.p. administration of heparine injection of 500 IU dose, the hearts were excised and perfused (modified Langendorf's method). Working schedule: stabilization/ischaemia/reperfusion proceed at intervals of 20/30/60 min. Monitored parameters in isolated heart: left ventricle pressure (LVP), end-diastolic pressure (LVEDP), contractility (+dP/dt(max)). Results: The treated hearts showed improved postischemic recovery, reaching LVP values of 92 +/- 6 % at the end of the reperfusion, placebo only 61 +/- 7 %. In placebo hearts LVEDP rose from 10.0 +/- 0.5 mmHg to 43 +/- 4 mmHg after, in treated animals only about 25 mmHg. The treated hearts improved +dP/dt(max) recovery during reperfusion to 91 +/- 8 %. These values were significantly greater than those obtained from the placebo hearts. Conclusions: Positive changes in monitored parameters were found in this experimental pilot study. We conclude that the administration of midazolam in laboratory rats has a cardioprotective potential against ischemia-reperfusion induced injury.  相似文献   

17.
The aim of the study was to determine the prostacyclin (PGI2) and thromboxane A2 (TXA2) synthetase activities of myocardial tissue and their variation during ischemia and reperfusion. Regional ischemia was induced by 10 min occlusion of the left anterior descending coronary artery in isolated Langendorff rabbit hearts. Biosynthesis of PGI2 and TXA2 were carried out by using arachidonic acid as substrate and left ventricle microsomes (LVM) from ischemic and non-ischemic areas as sources of PGI2 and TXA2 synthetase. 6-keto-PGF and TXB2, stable metabolites of PGI2 and TXA2 respectively, were determined by radioimmunoassay. Experiments carried out under the adopted conditions showed that LVM were able to synthetise PGI2 as well as TXA2 from arachidonic acid. On the other hand, ischemia depressed both PGI2 and TXA2 synthetase activities of cardiac tissue: the depression was more pronounced on TXA2 synthetase than on PGI2 synthetase with no significant difference between ischemic and non-ischemic regions. Moreover, ischemia increased the ratio indicating therefore that it can facilitate the formation of PGI2. The post ischemic reperfusion of the heart counteracted the decrease in PGI2 synthetase induced by ischemia which returned to the normal level: reperfusion also slightly reversed the decrease in TXA2 synthetase. However, the diminution in TXA2 synthetase of non-ischemic myocardium was attenuated but it remained lower than the normal level. These results suggested that the whole left ventricle is affected by regional ischemia. Furthermore it appears that myocardial TXA2 synthetase is more vulnerable than PGI2 synthetase to a lack of oxygen and nutrients.  相似文献   

18.
Oxidative stress may play a causative role in myocardial ischemia-reperfusion injury. However, it is a relatively understudied aspect regarding an optimal timing of antioxidant intervention during ischemia-reperfusion. The present study investigates the effect of different treatment regimens of Salvia miltiorrhiza (SM) herb extracts containing phenolic compounds that possess potent antioxidant properties on postischemic myocardial functional recovery in the setting of global myocardial ischemia and reperfusion. Langendorff-perfused rat hearts were subjected to 40 min of global ischemia at 37 degrees C followed by 60 min of reperfusion, and were randomly assigned into the untreated control and 2 SM-treated groups (n = 7 per group). In treatment 1 (SM1), 3 mg/mL of water soluble extract of SM was given for 10 min before ischemia and continued during ischemia through the aorta at a reduced flow rate of 60 microL/min, but not during reperfusion. In treatment 2 (SM2), SM (3 mg/mL) was given during the first 15 min of reperfusion. During ischemia, hearts in the control and SM2 groups were given physiological saline at 60 microL/min. The SM1 treatment reduced the production of 15-F2t-isoprostane, a specific index of oxidative stress-induced lipid peroxidation, during ischemia (94 +/- 20, 43 +/- 6, and 95 +/- 15 pg/mL in the coronary effluent in control, SM1, and SM2 groups, respectively; p < 0.05, SM1 vs. control or SM2) and postponed the onset of ischemic contracture. However, SM2, but not the SM1 regimen, significantly reduced 15-F2t-isoprostane production during early reperfusion and led to optimal postischemic myocardial functional recovery (left ventricular developed pressure 51 +/- 4, 46 +/- 4, and 60 +/- 6 mmHg in the control, SM1, and SM2 groups, respectively, at 60 min of reperfusion; p < 0.05, SM2 vs. control or SM1) and reduced myocardial infarct size as measured by triphenyltetrazolium chloride staining (26% +/- 2%, 22% +/- 2%, and 20% +/- 2% of the total area in the control, SM1, and SM2 groups, respectively, p < 0.05, SM2 vs. control). It is concluded that S. miltiorrhiza could be beneficial in the treatment of myocardial ischemic injury and the timing of administration seems important.  相似文献   

19.
The lipophilic antioxidant Trolox C, a vitamin E analog, was administered to isolated, buffer-perfused rabbit hearts subjected to 25 min of global stop-flow ischemia and 30 min of reperfusion. In six hearts, Trolox C (200 microM) was infused for 15 min immediately prior to ischemia and for the first 15 min of reperfusion. Six control hearts received only vehicle. Gas chromatography analysis confirmed that effective myocardial levels of Trolox were attained. At 30 min reperfusion, the recovery of left ventricular developed pressure was 56 +/- 3% of baseline in control hearts versus 70 +/- 4% in Trolox-treated hearts (p < .01). There was also significant improvement in recovery of Trolox-treated hearts in diastolic pressure and both maximum and minimum values of the first derivative of left ventricular pressure (dP/dt). Creatine phosphokinase release into the coronary effluent at 30 min of reperfusion was 16.5 +/- 8.4 IU/min in untreated and 6.3 +/- 1.0 IU/min (p < .05) in Trolox-treated hearts. Thus Trolox C, a lipophilic antioxidant, attenuated myocardial injury during stop-flow ischemia and reperfusion.  相似文献   

20.
To investigate the role of selenium (Se) in the developing porcine fetus, prepubertal gilts (n=42) were randomly assigned to either Se-adequate (0.39 ppm Se) or Se-deficient (0.05 ppm Se) gestation diets 6 wk prior to breeding. Maternal and fetal liver was collected at d 30, 45, 70, 90, and 114 of pregnancy. Concentrations of Se in maternal liver decreased during gestation in gilts fed the low-Se diet. The activity of cellular glutathione peroxidase (GPx) was decreased at d 30 and 45 of gestation in liver of gilts fed the low-Se diet. Concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were greater in liver homogenates from gilts fed the low-Se diet. Within the fetuses, liver Se decreased in those fetuses of gilts fed the low-Se diet. Although the activity of GPx in fetal liver was not affected by the maternal diet, concentrations of H2O2 and MDA in fetal liver were greater in fetuses from gilts fed the low-Se diet. Maternal liver GPx activity was approx 12-fold greater than fetal liver GPx activity regardless of dietary treatment. These results indicate that maternal dietary Se intake affects fetal liver Se concentration and feeding a low-Se diet during gestation increases oxidative stress to the fetus, as measured by fetal liver H2O2 and MDA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号