首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A triplet of adjacent, highly similar GT motifs in the phyA promoter of rice functions to support maximal expression of this gene. We have obtained a recombinant clone that encodes a full-length nuclear protein, designated GT-2, which binds specifically to these target sequences. This novel protein contains acidic, basic and proline- + glutamine-rich regions, as well as two autonomous DNA-binding domains, one NH2-terminal and the other COOH-terminal, that discriminate with high resolution between the three GT motifs. A duplicated sequence of 75 amino acids, present once in each DNA-binding domain, appears likely to mediate DNA target element recognition. Each copy of this duplicated protein sequence is predicted to form three amphipathic alpha-helices separated from each other by two short loops. The absence of sequence similarity to other known proteins suggests that this predicted structural unit, which we term the trihelix motif, might be representative of a new class of DNA-binding proteins.  相似文献   

2.
DNA binding factor GT-2 from Arabidopsis   总被引:2,自引:0,他引:2  
Complementary DNA clones encoding a DNA-binding factor have been obtained from Arabidopsis by DNA hybridization with a GT-2 factor cDNA clone from rice. The GT-2 gene appears to be present as a single copy in the Arabidopsis genome and is transcribed as a 2.1 kb mRNA which is not light-regulated. The longest open reading frame in the sequenced clones predicts a protein of 65 kDa, beginning with the first in-frame methionine. The protein contains basic, acidic, and proline/glutamine-rich motifs and has significant amino acid sequence homology to the rice GT-2 factor, including three regions of 50–75 amino acids each of greater than 60% identity. Two of these regions are predicted to form similar trihelix structures postulated to be involved in selective binding to specific variations of a GT-box motif DNA sequence found in the promoter regions of several plant genes. Except for weak similarity to a tobacco GT-box binding factor, GT-1a/B2F, Arabidopsis GT-2 has no similarity to other sequences in the databases. DNA-binding studies show that Arabidopsis GT-2 has binding characteristics similar to those of the rice GT-2 factor, but dissimilar to those of the tobacco GT-1a/B2F factor. The data indicate that a DNA-binding factor containing domains of similar structure and target-sequence specificity has been conserved between monocots and dicots.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
The analysis of pea rbcS-3A promoter sequence showed that BoxII was necessary for the control of rbcS-3A gene expression by light. GT-1, a DNA-binding protein that interacts with BoxII in vitro, is a good candidate for being a light-modulated molecular switch controlling gene expression. However, the relationship between GT-1 activity and light-responsive gene activation still remains hypothetical. Because no marked de novo synthesis was detected after light treatment, light may induce post-translational modifications of GT-1 such as phosphorylation or dephosphorylation. Here, we show that recombinant GT-1 (hGT-1) of Arabidopsis can be phosphorylated by various mammalian kinase activities in vitro. Whereas phosphorylation by casein kinase II had no apparent effect on hGT-1 DNA binding, phosphorylation by calcium/calmodulin kinase II (CaMKII) increased the binding activity 10–20-fold. Mass spectrometry analyses of the phosphorylated hGT-1 showed that amongst the 6 potential phosphorylatable residues (T86, T133, S175, T179, S198 and T278), only T133 and S198 are heavily modified. Analyses of mutants altered at T86, T133, S175, T179, S198 and T278 demonstrated that phosphorylation of T133 can account for most of the stimulation of DNA-binding activity by CaMKII, indicating that this residue plays an important role in hGT-1/BoxII interaction. We further showed that nuclear GT-1 DNA-binding activity to BoxII was reduced by treatment with calf intestine phosphatase in extracts prepared from light-grown plants but not from etiolated plants. Taken together, our results suggest that GT-1 may act as a molecular switch modulated by calcium-dependent phosphorylation and dephosphorylation in response to light signals.  相似文献   

12.
13.
Molecular dissection of GT-1 from Arabidopsis.   总被引:4,自引:1,他引:3       下载免费PDF全文
K Hiratsuka  X Wu  H Fukuzawa    N H Chua 《The Plant cell》1994,6(12):1805-1813
We isolated and characterized an Arabidopsis cDNA encoding the DNA binding protein GT-1. This protein factor, which contains 406 amino acids, is highly homologous to the previously described tobacco DNA binding protein GT-1a/B2F but is 26 amino acids longer. Recombinant Arabidopsis GT-1, which was obtained from in vitro translation, bound to probes consisting of four copies of pea small subunit of ribulose bisphosphate carboxylase rbcS-3A box II and required the same GGTTAA core binding site as the binding activity of an Arabidopsis nuclear protein preparation. However, unlike the truncated tobacco GT-1a prepared from Escherichia coli extracts, the full-length Arabidopsis GT-1 bound to pea rbcS-3A box III and Arabidopsis chlorophyll a/b binding protein CAB2 light-responsive elements, both of which contain GATA motifs. Deletion and mutational analyses suggested that the predicted trihelix region of GT-1 is essential for DNA binding. Moreover, GT-1 binds to target DNA as a dimer, and its C-terminal region contains a putative dimerization domain that enhances the binding activity. Transient expression of the GT-1::beta-glucuronidase fusion protein in onion cells revealed the presence of a nuclear localization signal(s) within the first 215 amino acids of GT-1.  相似文献   

14.
15.
16.
To define the regions of the maize alcohol dehydrogenase 1 (Adh1) promoter that confer tissue-specific expression, a series of 5' promoter deletions and substitution mutations were linked to the Escherichia coli beta-glucuronidase A (uidA) reporter gene and introduced into rice plants. A region between -140 and -99 not only conferred anaerobically inducible expression in the roots of transgenic plants but was also required for expression in the root cap, embryo, and in endosperm under aerobic conditions. GC-rich (GC-1, GC-2, and GC-3) or GT-rich (GT-1 and GT-2) sequence motifs in this region were necessary for expression in these tissues, as they were in anaerobic expression. Expression in the root cap under aerobic conditions required all the GC- and GT-rich motifs. The GT-1, GC-1, GC-2, and GC-3 motifs, and to a lesser extent the GT-2 motif, were also required for anaerobic responsiveness in rice roots. All elements except the GC-3 motif were needed for endosperm-specific expression. The GC-2 motif and perhaps the GT-1 motif appeared to be the only elements required for high-level expression in the embryos of rice seeds. Promoter regions important for shoot-, embryo-, and pollen-specific expression were proximal to -99, and nucleotides required for shoot-specific expression occurred between positions -72 and -43. Pollen-specific expression required a sequence element outside the promoter region, between +54 and +106 of the untranslated leader, as well as a silencer element in the promoter between -72 and -43.  相似文献   

17.
Drosophila GCM (glial cell missing) is a novel DNA-binding protein that determines the fate of glial precursors from the neural default to glia. The GCM protein contains the functional domain that is essential for recognition of the upstream sequence of the repo gene. In the DNA-binding region of this GCM protein, there is a cysteine-rich region with which divalent metal ions such as Zn(2+) must bind and other proteins belonging to the GCM family have a corresponding region. To obtain a more detailed insight into the structural and functional features of this DNA-binding region, we have determined the minimal DNA-binding domain and obtained inductively coupled plasma atomic emission spectra and (1)H-(15)N, (1)H-(15)N-(13)C and (113)Cd(2+) NMR spectra, with or without its specific DNA molecule. Considering the results, it was concluded that the minimal DNA-binding domain includes two Zn(2+)-binding sites, one of which is adjacent to the interface for DNA binding. Systematic mutational analyses of the conserved cysteine residues in the minimal DNA-binding domain revealed that one Zn(2+)-binding site is indispensable for stabilization of the higher order structure of this DNA-binding domain, but that the other is not.  相似文献   

18.
19.
20.
Expression of the Evi-1 gene is activated in murine myeloid leukemias by retroviral insertions and in human acute myelogenous leukemia by translocations and inversions involving chromosome band 3q26 where the gene resides. Aberrant expression of the Evi-1 gene has been shown to interfere with myeloid differentiation, which is proposed to be the basis for its role in leukemias. The Evi-1 gene encodes a 145-kDa DNA-binding protein containing two domains of seven and three Cys2-His2 zinc fingers. Previous studies identified a portion of the consensus DNA-binding sequence for the first domain of zinc fingers. The experiments presented here extend these studies and demonstrate that the first domain recognizes a consensus of 15 nucleotides consisting of GA(C/T)AAGA(T/C)AAGATAA. The first three fingers of the first domain do not detectably bind DNA but contribute to the binding by conferring a relative specificity for GACAA verses GATAA in the first position. The first three fingers also contribute to optimal binding of the 15-nucleotide consensus sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号