首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the bovine major histocompatibility complex in bovine leukaemia virus (BLV) infection and disease progression was investigated in a herd of Shorthorn cattle (n = 117). The frequency of cows that were seropositive to BLV-glycoprotein antigen was 51%. Twenty-three per cent of the seropositive cows were lymphocytotic. At the herd level, relative resistance to BLV-dependent B-cell proliferation and lymphocytosis among seropositive cows was associated with bovine lymphocyte antigen (BoLA)-DA7, whereas susceptibility was associated with BoLA-DA12.3. These associations were also confirmed at the family level, where BoLA phenotypes were used as haplotypic markers. Among the offspring of one BoLA-heterozygous sire (n = 33), resistance segregated with the DA7 haplotype and susceptibility with the DA12.3 haplotype. In this sire group, maternal transmission of the BoLA-w8 allele was associated with increased susceptibility to B-cell proliferation and lymphocytosis in w8/DA12.3 heterozygotes. These data provide the first evidence that subclinical progression of BLV infection is under the control of the BoLA complex, and suggest that the BoLA system can be used to select for resistance to B-cell proliferation and the development of lymphocytosis in BLV-infected herds.  相似文献   

2.
The bovine leukaemia virus (BLV) is an exogenous retrovirus that is closely related to the human T cell leukaemia viruses. Genetic resistance and susceptibility to persistent lymphocytosis (PL), an advanced subclinical stage of infection characterized by a polyclonal expansion of the infected B cell population, have been mapped to structural motifs in bovine MHC DRB3 (class II) alleles. To determine whether alleles of DRB3 influence the number of BLV-infected B cells in peripheral blood, seven pairs of Holstein cows naturally infected with BLV were matched on the basis of DRB3 genotype (resistance or susceptibility to PL), age, and year of seroconversion. Flow cytometry was used to separate B cell populations that then were tested for the presence of provirus by a single-cell PCR methodology. Animals with the PL-resistance associated DRB3.2*11 allele had significantly fewer BLV-infected B cells than did age- and seroconversion-matched cows with DRB3 alleles associated with susceptibility to PL. Our results demonstrate that DRB3 or a closely linked gene may play a direct role in controlling the number of BLV-infected peripheral B cells in vivo . Association of MHC class II alleles with resistance to disease progression in cattle naturally infected with BLV provides a unique immunogenetic model for the study of host resistance to human and other animal retroviral infections.  相似文献   

3.
Bovine leukemia virus (BLV), the causative agent of enzootic bovine leukosis, is an exogenous, B lymphotropic retrovirus belonging to the Retroviridae family that induces persistent lymphocytosis in cattle and sheep. PCR has proven to be particularly suitable for investigating herds of cattle with a very low incidence of BLV infection and for clarifying doubtful serological results obtained by immunodiffusion or ELISA. The native Iranian and Russian cattle have a series of valuable traits that discriminate them as unique breeds that are well able to compete with western analogues. However, their gene pools have not been analyzed with molecular markers, including detection of BLV by PCR. Two pairs of primers were used: gag1 and gag2, and pol1 and pol2, which encompass 347- and 599-bp fragments of the BLV gene, respectively. Sixty-five Iranian Sistani, 120 Yaroslavl, 50 Mongolian, and 35 Black Pied cows were investigated. Among these 270 animals, we obtained 42 positive and 15 doubtful results in the first PCR. The second PCR was very effective in increasing BLV test reliability data to support detection of BLV.  相似文献   

4.
The role of the bovine major histocompatibility system (BoLA) in subclinical bovine leukemia virus (BLV) infection was investigated in a herd of Holstein-Friesian cows (n=240). The BoLA W8.1 allele was negatively associated with the presence of antibodies to the major BLV envelope glycoprotein, BLV-gp51 (corrected P<0.001, relative risk =0.31). These results suggest that a BoLA-linked gene(s) may influence the early spread of BLV infection. Since B cells are the primary target of BLV infection, we then determined the relationship between BoLA-A locus phenotypes and B-cell numbers in peripheral blood of seropositive and seronegative cows. There were no significant differences between BoLA-A alleles for any hematological parameter in seronegative cows. Seropositive cows with the W12.1 allele had significantly greater absolute numbers of lymphocytes per microliter and B cells per microliter than did seropositive cows with other BoLA-A phenotypes (P<0.01, respectively). The average effect associated with the W12.1 allele in BLV-infected cows was an increase of 2010 B cells per microliter of whole blood relative to BLV-infected cows with other BoLA-A phenotypes. These results demonstrate that susceptibility to the polyclonal expansion of BLV-infected B lymphocytes is associated with the W12.1 allele in Holstein-Friesian cattle. Compared with results of a previous study in a herd of Shorthorn cattle, it appears that resistance and susceptibility to subclinical progression of BLV infection are associated with different BoLA-A locus alleles in different cattle breeds.Abbreviations used in this paper AGID agar gel immunodiffusion - BLV bovine leukemia virus - BoLA bovine lymphocyte antigen - EBL enzootic bovine leukosis - HLA human leukocyte antigen - MHC major histocompatibility complex - PL persistent lymphocytosis  相似文献   

5.
Bovine embryonic spleen cell cultures were examined to find several factors influencing the specificity, sensitivity and reproducibility of the syncytia infectivity assay of bovine leukemia virus (BLV). The highest sensitivity of the assay were observed when cell sheets of 30 to 50% confluence were inoculated with a stock of BLV, and when cells containing 4 or more nuclei were counted as syncytial cells. Treatment of the cell sheets with a diethylamino-ethyl-dextran solution (25 micrograms/ml) prior to BLV inoculation was found to be essential for the optimal induction of syncytia. Low-passage cultures were found to be more susceptible to the induction of syncytia by BLV than high-passage cultures. Cell-free BLV preparations decreased in syncytia-inducing ability to some extent by the first cycle of freezing (at -70 degrees C) and thawing. No further decrease, however, was caused by repeated cycles of freezing and thawing or by prolonged incuvation at -80 degrees C. The syncytia-inducing activity of BLV was inhibited by all the BLV-precipitating antibody-positive sera originated from both cases of the adult form of bovine leukosis and cases of persistent lymphocytosis. It was not inhibited by the sera of 16 of 17 cattle apparently healthy and negative for BLV-precipitating antibody. These results indicate that the syncytia infectivity assay and syncytia inhibition test are specific for BLV.  相似文献   

6.
The polymerase chain reaction was used to detect and characterize low-abundance bovine leukemia virus (BLV) mRNAs. In infected cattle we could detect spliced mRNA with a splice pattern consistent with a Tax/Rex mRNA, as well as at least four alternatively spliced RNAs. Two of the alternatively spliced mRNAs encoded hitherto unrecognized BLV proteins, designated RIII and GIV. The Tax/Rex and alternatively spliced mRNAs could be detected at their highest levels in BLV-infected cell cultures; the next highest levels were found in samples from calves experimentally infected at 6 weeks postinoculation. Alternatively spliced mRNAs were also expressed, albeit at lower levels, in naturally infected animals; they were detected by a nested polymerase chain reaction. Interestingly, the GIV mRNA was specifically detected in naturally infected cows with persistent lymphocytosis and in two of five calves at 6 months after experimental infection with BLV. Furthermore, the calf with the strongest signal for GIV had the highest lymphocyte counts. These data may suggest a correlation between expression of the GIV product and development of persistent lymphocytosis. Some of the donor and acceptor sites in the alternatively spliced mRNAs were highly unusual. The biological mechanisms and significance of such a choice of unexpected splice sites are currently unknown.  相似文献   

7.
Bovine leukemia virus (BLV), an oncovirus related to human T-cell leukemia virus type I, causes a B-cell lymphoproliferative syndrome in cattle, leading to an inversion of the T-cell/B-cell ratio and, more rarely, to a B-cell lymphosarcoma. Sheep are highly sensitive to BLV experimental infection and develop B-cell pathologies similar to those in cattle in 90% of the cases. BLV tropism for B cells has been well documented, but the infection of other cell populations may also be involved in the BLV-induced lymphoproliferative syndrome. We thus looked for BLV provirus in other leukocyte populations in sheep and cattle by using PCR. We found that while B cells harbor the highest proviral load, CD8+ T cells, monocytes, and granulocytes, but not CD4+ T cells, also bear BLV provirus. As previously described, we found that persistent lymphocytosis in cows is characterized by an expansion of the CD5+ B-cell subpopulation but we did not confirm this observation in sheep in which the expanded B-cell population expressed the CD11b marker. Nevertheless, BLV could be detected both in bovine CD5+ and CD5- B cells and in sheep CD11b+ and CD11b- B cells, indicating that the restricted BLV tropism for a specific B-cell subpopulation cannot explain its expansion encountered in BLV infection. Altogether, this work shows that BLV tropism in leukocytes is wider than previously thought. These results lead the way to further studies of cellular interactions among B cells and other leukocytes that may intervene in the development of the lymphoproliferative syndrome induced by BLV infection.  相似文献   

8.
In the present study, we monitored Foxp3+ T cells in bovine leukemia virus (BLV)‐infected cattle. By flow cytometric analysis, the proportion of Foxp3+CD4+ cells from persistent lymphocytotic cattle was significantly increased compared to control and AL cattle. Interestingly, the proportion of Foxp3+CD4+ cells correlated positively with the increased number of lymphocytes, virus titer and virus load, whereas it inversely correlated with IFN‐γ mRNA expression, suggesting that Foxp3+CD4+ T cells in cattle have a potentially immunosuppressive function. Further studies are necessary to elucidate the detailed mechanism behind the increased Treg during BLV infection.  相似文献   

9.
10.
The polymerase-chain reaction was applied for detection of provirus DNA of the bovine leukaemia virus (BLV). A short fragment of 292 bp including region R and U5 LTR 5' of BLV was amplified, and the optimum parameters of amplification of this fragment were established. Electrophoresis revealed the presence of the 292 bp fragment from the leucocytes of four out of six cows showing a positive serological response to BLV antigens. Application of the polymerase-chain reaction in diagnosis of bovine leukaemia is suggested.  相似文献   

11.
Pathogenicity of molecularly cloned bovine leukemia virus.   总被引:1,自引:1,他引:0       下载免费PDF全文
To delineate the mechanisms of bovine leukemia virus (BLV) pathogenesis, four full-length BLV clones, 1, 8, 9, and 13, derived from the transformed cell line FLK-BLV and a clone construct, pBLV913, were introduced into bovine spleen cells by microinjection. Microinjected cells exhibited cytopathic effects and produced BLV p24 and gp51 antigens and infectious virus. The construct, pBLV913, was selected for infection of two sheep by inoculation of microinjected cells. After 15 months, peripheral blood mononuclear cells from these sheep served as inocula for the transfer of infection to four additional sheep. All six infected sheep seroconverted to BLV and had detectable BLV DNA in peripheral blood mononuclear cells after amplification by polymerase chain reaction. Four of the six sheep developed altered B/T-lymphocyte ratios between 33 and 53 months postinfection. One sheep died of unrelated causes, and one remained hematologically normal. Two of the affected sheep developed B lymphocytosis comparable to that observed in animals inoculated with peripheral blood mononuclear cells from BLV-infected cattle. This expanded B-lymphocyte population was characterized by elevated expression of B-cell surface markers, spontaneous blastogenesis, virus expression in vitro, and increased, polyclonally integrated provirus. One of these two sheep developed lymphocytic leukemia-lymphoma at 57 months postinfection. Leukemic cells had the same phenotype and harbored a single, monoclonally integrated provirus but produced no virus after in vitro cultivation. The range in clinical response to in vivo infection with cloned BLV suggests an important role for host immune response in the progression of virus replication and pathogenesis.  相似文献   

12.
The gag gene encoded protein, p24 of bovine leukemia virus (BLV), was cloned and expressed as thioredoxin-6xHis-p24 protein in Escherichia coli. The bacterial cells carrying plasmid pT7THis-p24 expressed the protein of 38 kDa that was detected by immunoblotting analysis using anti-p24 monoclonal antibodies and sera from BLV infected cattle and sheep. The purified p24 fusion protein was shown to be sensitive and specific for detection of BLV antibodies in the infected cattle.  相似文献   

13.
The mechanism of leukemogenesis and persistent lymphocytosis (PL; benign expansion of B lymphocytes) in cattle infected with bovine leukemia virus (BLV; a retrovirus closely related to human T-cell leukemia virus type 1) is unknown; however, the immune system likely plays an important role in controlling the outcome of infection. In this study, we compared T-cell competence in serologically positive alymphocytotic (AL) animals with T-cell functions in animals with progressive stages of infection, PL and tumor bearing (TB). Dramatic differences were observed in lymphocyte proliferation to recombinant proteins encoded by BLV gag (p12, p15, and p24) and env (gp30, and gp51) genes in different disease stages. Lymphocytes from AL cattle recognized an average of three of five recombinant proteins per animal. Expansion of antigen pulsed lymphocytes in interleukin-2 increased protein recognition to almost five per animal. In contrast, lymphocytes from PL and TB animals failed to recognize any BLV recombinant proteins. Short-term T-cell cultures from the PL group expanded in interleukin-2, as well as the PL and TB cells cultured in indomethacin (3 to 6 microg/ml), increased the average of recognized proteins per animal to one. Cells proliferating to BLV antigens were CD4+ T lymphocytes, as shown by cell depletion studies. The positive effect of indomethacin suggests involvement of prostaglandin E2 as a negative regulatory factor in the later stages of disease. Thus, for the first time, advancing stages of BLV infection were correlated with decreased T-cell competence, providing deeper insight into pathogenesis of retroviral infections.  相似文献   

14.
15.
Summary Several factors that influence the sensitivity of the syncytia infectivity assay for the bovine leukemia virus (BLV) and BLV-infected lymphocytes have been examined. The use of early-passage indicator bovine embryonic spleen (BESP) cells and their pretreatment with diethylamino-ethyl-dextran (DEAE-D) was essential for optimal sensitivity. Polybrene was less effective than DEAE-D. The combination of DEAE-D and polybrene was more effective than DEAE-D alone when BLV-infected leukocytes were used as the inoculum, but not when the inoculum was a cell-free BLV preparation. Using BESP cell passages 4 to 11 as indicators, reproducible titers were obtained when aliquots of the same virus stock were assayed at different times after freezer storage. When assaying peripheral blood lymphocytes from infected cattle, optimal syncytia responses were observed consistently by inoculating 5×106 viable lymphocytes per 60-mm Falcon dish. Centrifugation of peripheral blood leukocytes from BLV-infected cattle in discontinuous bovine serum albumin gradients can be used to separate a subpopulation of infected lymphocytes. Use of this subpopulation as the inoculum, rather than unseparated buffy-coat leukocytes, greatly increases the sensitivity of the syncytia infectivity assay. This work was supported in part by USPHS Grant 1-PO 1-CA-14193-03, Pennsylvania Department of Agriculture Grant ME4, and USDA Cooperative Agreement 12-14-100-10, 675 (45).  相似文献   

16.
Kaja RW  Olson C 《Theriogenology》1982,18(1):107-112
Semen and serum were obtained from four bovine leukosis virus (BLV) infected bulls from each of eight bull studs. The samples from the 32 bulls were frozen and stored in liquid nitrogen for subsequent testing. The sera were tested for antibodies to BLV by the agar gel immunodiffusion (AGID) method. Thirty of the bulls were found to be infected with BLV. Pairs of sheep were intraperitoneally inoculated with semen pools of the four bulls from each bull stud. None of the sheep developed antibodies to BLV. A later challenge with BLV infected lymphocytes resulted in the infection of all challenged sheep indicating that they were susceptible to BLV infection. The results provide evidence that transmission of BLV via leukocyte free semen from BLV infected bulls does not occur.  相似文献   

17.
Integration of bovine leukemia virus (BLV) in the genomes of infected cells was investigated in cattle with enzootic bovine leukosis (EBL) and sporadic bovine leukosis (SBL). Southern blot hybridization of BLV cDNA to Eco RI and Xba I restriction fragments of EBL tumor DNAs revealed that: 1) one to four or more copies of proviral DNA were integrated per genome; 2) the restriction pattern of the integrated proviral DNA was the same in two or three different tumors from the same animals; and 3) different patterns were observed among tumors from four different animals. These findings suggest the monoclonal origin of different tumors in an individual animal and the existence of multiple chromosomal integration sites of BLV provirus. DNAs from several SBL tumors were also analyzed with the same restriction enzymes, but with both representative and cDNA3'-enriched's of BLV RNA. No hybridization bands reactive with representative BLV cDNA could be detected, while several bands appeared to hybridize with cDNA3'-enriched.  相似文献   

18.
The bovine leukemia virus (BLV) is an oncogenic retrovirus that is associated with the development of persistent lymphocytosis (PL) and lymphoma in cattle. While B lymphocytes have been shown to be the primary cellular target of BLV, recent studies suggest that some T lymphocytes and monocytes may be infected by the virus. Because virally altered functions of monocytes and/or T cells could contribute to the development of lymphoproliferative disease, we sought to clarify the distribution of the BLV provirus in subpopulations of peripheral blood mononuclear cells in seropositive cows with and without PL. CD2+ T cells, monocytes, and CD5+ and CD5- B cells were sorted by flow cytometry and tested for the presence of BLV by single-cell PCR. We did not obtain convincing evidence that peripheral blood monocytes or T lymphocytes contain the BLV provirus in seropositive cows with or without PL. In seropositive cows without PL (n=14), BLV-infected CD5+ and CD5- B cells accounted for 9.2% +/- 19% and 0.1% +/- 1.8% of circulating B lymphocytes, respectively. In cows with PL (n=5), BLV-infected CD5+ and CD5- B cells accounted for 66% +/- 4.8% and 13.9% +/- 6.6% of circulating B lymphocytes, respectively. The increase in lymphocyte numbers in cows with PL was entirely attributable to the 45-fold and 99-fold expansions of infected CD5+ and CD5- B-cell populations, respectively. Our results demonstrate that B cells are the only mononuclear cells in peripheral blood that are significantly infected with BLV. On the basis of the absolute numbers of infected cells in seropositive, hematologically normal animals, there appear to be differences in susceptibility to viral spread in vivo that may be under the genetic control of the host.  相似文献   

19.
20.
Bovine leukaemia virus (BLV) causes lymphosarcoma and persistent lymphocytosis (PL). Some MHC class II gene polymorphisms have been associated with resistance and susceptibility to the development of lymphosarcoma and PL, as well as with a reduced number of circulating BLV-infected lymphocytes. Previously, 230 BLV-infected Holstein cattle were classified into two infection profiles characterized by low and high proviral loads (LPL and HPL respectively). Here, the influence of the polymorphism at the BoLA-DRB3.2* gene of these animals was examined. After genotyping, the association between the BoLA-DRB3.2* alleles and the BLV infection profile was determined as the odds ratio (OR). Two subtypes of allele *11 were identified (ISAG *0901 and *0902 ). Allele ISAG *0902 showed a stronger association with the LPL profile (OR = 8.24; P  <   0.0001) than allele *11 itself (OR = 5.82; P  <   0.0001). Allele ISAG *1701 ( *12 ) also showed significant association with the LPL profile (OR = 3.46; P  <   0.0055). Only one allele, ISAG *1501 or 03 ( *16 ), showed significant association with HPL (OR = 0.36; P  <   0.0005). The DRB3.2* alleles were assigned to three categories: resistant ( R ), susceptible ( S ) and neutral ( N ). Based on their DRB3 genotypes, cattle were classified as homozygous or heterozygous. The RR and RN genotypes were associated with the LPL profile, while the SS and NS genotypes were associated with the HPL profile. The RS genotype could not be associated with any particular profile. Our results show that allele ISAG *0902 appears to be the best BLV resistance marker in Holstein cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号